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Abstract

In decision making, an optimal point represents the settings for which a classification system

should be operated to achieve maximum performance. Clearly, these optimal points are of great

importance in classification theory. Not only is the selection of the optimal point of interest, but

quantifying the uncertainty in the optimal point and its performance is also important.

The Youden index is a metric currently employed for selection and performance quantification

of optimal points for classification system families. The Youden index quantifies the correct

classification rates of a classification system, and its confidence interval quantifies the uncertainty

in this measurement. This metric currently focuses on two or three classes, and only allows for

the utility of correct classifications and the cost of total misclassifications to be considered. An

alternative to this metric for three or more classes is a cost function which considers the sum of

incorrect classification rates. This new metric is preferable as it can include class prevalences and

costs associated with every classification. In multi-class settings this informs better decisions and

inferences on optimal points.

The work in this dissertation develops theory and methods for confidence intervals on a metric

based on misclassification rates, Bayes Cost, and where possible, the thresholds found for an optimal

point using Bayes Cost. Hypothesis tests for Bayes Cost are also developed to test a classification

systems performance or compare systems with an emphasis on classification systems involving three

or more classes. Performance of the newly proposed methods is demonstrated with simulation.
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STATISTICAL INFERENCE ON OPTIMAL POINTS TO

EVALUATE MULTI-STATE CLASSIFICATION SYSTEMS

I. Introduction

Decision making occurs daily in a vast range of fields, from health care to information

processing and military applications. Generally, these decisions may be based off of classification

systems which, for example, label an individual as diseased or not diseased or perhaps label an

object of interest as a target or non-target. Although such decisions could be made as simply as

through a quick visual inspection, for many decisions of critical importance it is of interest to

use statistics and best practices to develop and compare classification systems and quantify their

performance so as to choose the best classification method available to aid such decisions [68].

A simple classification rule may classify an item into one of two classes, such as ”Positive” and

”Negative”, or ”Diseased” and ”Not Diseased”. Although a lot of research has been conducted to

develop methods for the quantification of such classification systems, most applications in the real

world are more complicated and do not fit into simple binary classification rules. Despite examples

of classification systems in most applications, this research focuses on examples from a medical

diagnostic standpoint, as medical diagnostics carry great importance as well as the possibility for

large consequences with respect to misdiagnoses.

One recent example of a medical diagnostic decision involves the use of biomarkers to diagnose

subjects post kidney transplant as either being normal kidney function, normal kidney function with

proturina (a progression towards the diseased state), or chronic allofraft nephropathy (the diseased

state) [58]. Other examples abound such as that of HIV diagnosis. While screening for this disease

by using a specific biomarker, patients can be categorized into one of three categories: HIV-negative,

HIV-positive non-symptomatic, and HIV-positive with AIDS dementia complex [45]. Extending

the health concept to structures, we may be interested in the detection of the stage of structural

1



damage as being none, within a pre-specified safety range, or beyond the safe operating range. In

all of these examples the middle class is important as it represents a state in the progression of

some phenomenon (e.g. disease or damage). Thus, diagnosis of the middle class may allow for

intervention to prevent a subject or specimen from reaching the end state.

There are methods available to determine the performance of a classification system requiring

more than two outcomes. Many of these methods use extensions of receiver operating characteristic

(ROC) curve theory for comparing classification systems on their abilities to correctly classify

objects [16, 17, 20, 28, 29]. However, the number of possible outcomes is not the only concern

when choosing a classification system. The prevalence of the different classes as well as the costs

associated with making the correct (or incorrect) decision should also be considered [30, 42, 58, 65].

For example, in HIV diagnosis, different misclassifications may be considered more or less

significant. A person who is misdiagnosed as the non-diseased state when they are actually HIV-

positive may be considered much worse than the opposite error occurring (a non-diseased person

who is diagnosed as HIV-positive). In the first scenario, a person will not receive necessary

medical intervention and may now put others at risk since they are unaware of their HIV-positive

status. Clearly though, the latter misdiagnosis presents its own cost in that an individual may begin

treatment or otherwise suffer with a diagnosis that is incorrect.

In a two-class setting, assigning a cost to the different misclassifications is equivalent to

assigning an associated cost to the different correct classifications. However, this equivalence

does not universally exist for settings with three or more classes. Currently, little work has been

done to compare and quantify the performance of multi-class classification systems by using the

misclassifications. By using the misclassifications, different costs may be placed on all the possible

errors made by the classification system [58, 65].

The work of this dissertation improves classification system selection and performance

quantification for more complicated classification settings involving three or more classes with

unequal costs associated with the different misclassification errors. Specifically, precision of

estimates of classification system metrics and their optimal points through confidence intervals and

hypothesis tests are explored to aid decision makers.

2



II. Classification and Optimal Performance

2.1 Classification System Families

A classification system (A) is any process that assigns the elements from k partitions of an

event set, E = (ε1, ε2, ..., εk) to k distinct elements of a label set, L = (l1, l2, ..., lk) . These partitions

may be referred to as classes. For example, a two-class label set could be {0,1} or {Diseased, Non

Diseased}. Data is collected on the elements, which are then processed into a feature or set of

features, F = ( f1, f2, ..., fm) . These features are then used to assign the different elements from E

to the respective labels, L , (A : E → F → L) . It is assumed that there is a parameter or vector of

parameters for the features, θ ∈ Θ , that can be altered to change the outcome of the classification

system.1 Thus, for every θ ∈ Θ , there is a classification system (Aθ) , and the set of classification

systems A = (Aθ, θ ∈ Θ) is called a classification system family (CSF) [58]. It is also assumed

that there exists a truth label set, T =(t1, t2, ..., tk) , such that all elements of the population would be

correctly labeled by this set.

A two-class classification system has four outcomes with respect to truth (see Table 2.1).

Defining one class as positive and the other class as negative, the possible outcomes from the

classification system are true positive, true negative, false positive, and false negative. True positive

occurs when the system correctly classifies a positive element with a ”positive” label (the rate of

true positive is often called sensitivity). True negative occurs when the system correctly classifies a

negative element with a ”negative” label (the rate of true negative is called specificity). These two

outcomes are correct classifications. The other two outcomes are misclassifications. A false positive

occurs when the system incorrectly classifies a negative element with a ”positive” label. Likewise,

a false negative occurs when the system incorrectly classifies a positive element with a ”negative”

label. The results of a classification system are often arranged in a contingency table as seen in

Table 2.1 with the truth along the columns and the classification results down the rows.

1These parameters will generally be referred to as the thresholds for the classification system.
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Table 2.1: Two-class contingency table where green cells correspond to correct classifications and

red cells correspond to misclassifications.

Positive Negative 

“Positive” True Positive False Positive 

“Negative” 
False 

Negative 
True Negative 

TRUTH 

C
L

A
S

S
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A

T
IO

N
 

An example classification system in a medical diagnostic setting may have elements in

partitions of the event set, E =(Non-Diseased, Diseased), and the label set, L =(”Non-Diseased”,

”Diseased”). After the collection of data such as a patient’s blood sample, the feature extracted

might be the value of a specific biomarker determined from the blood sample, F =(biomarker level,

µmol). Then a single threshold, θ ∈ Θ , is determined so that whenever the observed biomarker

level is less than θ , the patient is labeled as ”Diseased”, and whenever the biomarker level is

greater than θ , the patient is labeled as ”Non-Diseased” (see Figure 2.1). For instance, when total

cholesterol (a biomarker feature) is greater than 240 (the threshold), a patient may be labeled with

”high cholesterol”.

In the two-class case, there are two correct classifications and two misclassifications. In the

k-class case there are k correct classifications and k2 − k misclassifications. When there are more

than two classes, the correct and misclassifications can no longer be defined as true positive or false

negative. Therefore, these terms are generalized to correct classifications and misclassifications.

For simplicity of notation, the outcomes are labeled i | j , where j is the true label for an element

and i represents the classification system label for an element, i , j = 1, 2, ..., k . Then for all i = j ,

the outcome is a correct classification and for all i , j , the outcome is a misclassification (see Table

2.2 for k = 3).
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False 
Positive 

Rate 

False 
Negative 

Rate 

Distribution of feature 
(biomarker) values for 
diseased individuals Distribution of feature 

(biomarker) values for 
non-diseased individuals 

Threshold (θ) value chosen 
to label elements based 

on biomarker value 

All elements labeled as “Diseased” All elements labeled as “Non-Diseased” 

Figure 2.1: Example of a classification system in a medical setting where elements are either

diseased or non-diseased. Hypothetical feature distributions for each class and a potential threshold

(green line) used to label the elements as either ”Diseased” or ”Non-Diseased” are shown.

Table 2.2: Three-class contingency table where green cells correspond to correct classifications,

i = j, and red cells correspond to misclassifications, i , j .

CLASS 1 CLASS 2 CLASS 3 

“CLASS 1” 1|1 1|2 1|3 

“CLASS 2” 2|1 2|2 2|3 

“CLASS 3” 3|1 3|2 3|3 
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2.2 Receiver Operating Characteristic Curves

Receiver operating characteristic (ROC) curves are used to describe the performance of a CSF

when there are two classes (See Figure 2.2). The ROC curve plots the true positive rate versus the

false positive rate over all threshold values, θ ∈ Θ . This curve allows for interpretation of the trade-

off between the true positive and false positive rates for varying thresholds. Thus, the ROC curve

represents the performance of the entire CSF for all θ ∈ Θ .
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The ROC curve plots classification rates, bounding the curve between 0 and 1 on both the

horizontal and vertical axes. The point on the ROC curve that represents perfect classification is

(0,1) (Figure 2.2). This point represent a perfect true positive rate (1) and a perfect false positive rate

(0). Therefore, CSFs whose ROC curve approach this point are desired and the single classification

system closest to this point is optimal. In a two-class setting, the probability of correctly classifying

due to random chance is 0.5. The line on the ROC plot that corresponds to chance classification is

called the chance line and intersects the points (0,0) and (1,1) (Figure 2.2) [19]. A CSF performing

worse than random chance would not be of interest, and therefore only CSFs whose ROC curves

lie above the chance line are usually considered. Finally, when there are more than two classes, the

ROC curve may be extended to a ROC surface by plotting the correct classification rates over all

θ ∈ Θ in a k dimensional space, though only the 3-dimensional surface is visible graphically.

(1,1) 

(0,0) 

(0,1) 

Figure 2.2: Receiver Operating Characteristic Curve.

2.3 Optimal Points

The single classification system resulting in the best classification performance for the CSF is

said to occur at the optimal point (or points), corresponding to some θ ∈ Θ . For a two-class system,

the optimal point is usually found where the probability of a true positive and the probability of a true
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negative are maximized (maximization of correct classification probabilities), or equivalently, where

the false positive and false negative probabilities are minimized (minimization of misclassification

probabilities). Therefore, the optimal point reflects a compromise between the correct classification

probabilities (or misclassification probabilities) [42]. The optimal point for a two-class CSF can

be found using the ROC curve. If the prevalence of classes and costs associated with classification

outcomes are considered equal for both classes, the optimal point occurs where the tangent line to

the ROC curve is parallel to the chance line (ie. the slope of the ROC curve is 1) [42]. This is

equivalent to finding the point on the ROC curve with the greatest vertical distance from the chance

line [54]. The threshold value(s) that produce this point are then chosen as the optimal threshold

values for this CSF.

Extensive work in the literature suggests that costs associated with a classification system’s

outcomes should be taken into account when evaluating the system and estimating optimal

thresholds [1, 30, 42, 58, 63–65, 67]. In addition to the costs of the classification outcomes, the

prevalence of the different classes may be of importance when determining optimal settings for

a CSF [9, 42]. If the a priori prevalence of the diseased and non-diseased (or target and non-

target) classes as well as the a priori costs associated with the decision outcomes are taken into

consideration, the CSF may have a different optimal point (see Figure 2.3) [19, 58, 67]. When

prevalence and costs are considered, the optimal point occurs on the ROC curve where the slope is

equivalent to

S lope =
1 − pP

pP
×

[
cFP − cT N

cFN − cT P

]
(2.1)

[42]. The pP is the prevalence of the positive class, cT N is the cost of a true negative, cFP is the cost

of a false positive, cT P is the cost of a true positive, and cFN is the cost of a false negative. Under

the assumption of equal prevalences and equal costs of misclassification (or correct classification),

this slope is equal to one as expected.

The optimal point for a k-class classification system will usually correspond to at least k − 1

threshold values. For example, in order to classify subjects into three categories (HIV negative

(NEG), HIV positive non-symptomatic (NAS), and HIV-positive with AIDS dementia complex

(ADC)), two threshold values (θ1 < θ2) on a biomarker (NAA/Cr) may be used as a diagnostic
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Figure 2.3: Different optimal points (in red) for the same CSF, determined by Equation 2.1. The

orange line has a slope of one, representing equal class prevalence and costs associated with the

classifications. Both the green and blue lines assume a positive class prevalence of 1/3. The blue

line has a slope of 1/6 with cFN >> cFP . The green line has a slope of 2 with cFP = cFN . For each

line cT N = cT P = 1 .

test [45]. If a subject’s NAA/Cr level is below θ1 they are classified as ADC, if the subject’s NAA/Cr

level is between θ1 and θ2 they are classified as NAS, and finally if the subject’s NAA/Cr level is

greater than θ2 they are classified as NEG [45] (see Figure 2.4).

2.4 Metrics for Optimal Points

2.4.1 The Youden Index.

The Youden index (J) was first introduced by W. J Youden in 1950 as an index for rating

diagnostic tests (or classification systems) with two classes [76]. The Youden index has been shown

to be a useful metric for measuring a classification system’s performance as a function of the correct

classification probabilities [23, 45, 46, 50, 56, 76]. In a two-class framework, this index is defined
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1θ 2θ

Classified  
as NAS 

Classified  
as ADC 

Classified  
as NEG 

Figure 2.4: Three-class classifications for HIV example. Distributions of the NAA/Cr levels are

plotted for ADC (black), NAS (red), and NEG (blue) as well as potential threshold values, θ1 and

θ2 , used to determine a subject’s classification.

as the sum of the system’s specificity (true negative rate) and sensitivity (true positive rate) minus

one. Using J, the optimal point of the classification system is found by choosing the threshold(s),

θ ∈ Θ , that maximize J, thereby maximizing the correct classification probabilities. The thresholds

associated with the maximum J characterize the CSF at its optimal performance (with respect to

correct classification) and correspond to the optimal point on the ROC curve where the slope is

equal to one. Therefore, classification systems can be compared by calculating J:

J = max
θ∈Θ
{sensitivity(θ) + speci f icity(θ) − 1} (2.2)

A classification system which performs worse than chance is generally not of interest, and therefore

it is assumed that both sensitivity and specificity are bounded between 0.5 and 1. For this reason,

J = sensitivity(θ) + speci f icity(θ) − 1 is bounded between 0 and 1 for systems performing better

than chance [76].
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Costs associated with the different classifications as well as class prevalence may be of

importance in the determination of J. In fact, when not explicitly considering a cost structure

when using J, a cost and prevalence for each class is being assumed, that of equal weight for all

classes [55, 64]. Other costs may be considered by using a generalization to J which incorporates a

cost benefit ratio weighted by class prevalence in the two-class framework [30, 63]. The generalized

Youden index (GYI) for two classes is defined as

GYI = max
θ∈Θ

{
sensitivity(θ) +

1 − pP

pP
×

[
cFP − cT N

cFN − cT P

]
× speci f icity(θ) −G

}
(2.3)

where G is a constant determined by the prevalence of the positive class and the costs associated

with the different decisions [30, 40, 63]. Notice that the prevalence/cost multiplier is the same as in

Equation 2.1

When there are more than two classes, J is extended as the sum of the k correct classification

probabilities [45, 46]. Under this framework, the correct classification probabilities can no longer be

distinguished by sensitivity and specificity, so instead, the k correct classification probabilities are

labeled as Pi= j| j(θ) ,where j = 1, ..., k denotes the true class and i = 1, ..., k denotes the classification

system’s labeled outcome. Then J is redefined as

J = max
θ∈Θ


k∑

i=1
i= j

k∑
j=1

Pi| j(θ)

 (2.4)

J is generalized by adding a multiplier (prevalence and/or utility) to each correct classification

probability for classification systems with three or more classes [45, 46]. The limitation with

such an extension is that only costs of the total misclassification and (utility of the) total correct

classification outcomes within each class are used. This ignores possible different costs on class

specific misclassifications. For example, misclassifying stage 3 cancer as stage 2 may have a

different cost than classifying stage 3 as stage 1.

Extensive work has derived formulas for determining J and the optimal threshold(s) for CSFs,

under various distributional assumptions of the feature used for classification, and focused on the

two-class framework [23, 33, 49, 54, 56]. An overview of these results are given in the following

sections, and are separated into parametric and nonparametric methods.
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2.4.1.1 Parametric Methods.

Assume two classes and a single feature used for classification where the feature is

independently and normally distributed for each class, where X is the first class and Y is the second

class, denote X j ∼ N(µ1, σ
2
1) for j = 1, ..., n1 , Yi ∼ N(µ2, σ

2
2) for i = 1, ..., n2 , and without loss of

generality (WLOG) let µ1 < µ2 (see Figure 2.1). Recall that the probability distribution function

(pdf) for the normal distribution is

f (w | µ, σ) =
1
√

2πσ
e
−(w−µ)2

2σ2 −∞ < w < ∞, −∞ < µ < ∞, σ > 0 (2.5)

Then the Youden index may be written as

J = Φ

(
µ2 − θ

∗

σ2

)
+ Φ

(
θ∗ − µ1

σ1

)
− 1 (2.6)

where Φ is the normal cumulative distribution function (CDF) [56]. Here, the maximum is excluded

because the optimal threshold θ∗ is used. The closed form solution for the optimal threshold, θ∗ ∈ Θ ,

which maximizes Equation 2.6 is given by

θ∗ =
µ1(b2 − 1) − a + b

√
a2 + 2(b2 − 1)σ2

1 ln(b)

(b2 − 1)
(2.7)

where a = µ2 − µ1 and b =
σ2
σ1

[56]. If σ1 = σ2 , this result does not exist, but for this case the

optimal point is the midpoint between the distribution means given by [56]:

θ∗ =
µ1 + µ2

2
(2.8)

The GYI may also be rewritten using the normal CDF:

GYI = Φ

(
µ2 − θ

∗

σ2

)
+ R × Φ

(
θ∗ − µ1

σ1

)
−G (2.9)

where

R =
1 − pp

pp
×

[
cFP − cT N

cFN − cT P

]
(2.10)

Again, the maximization is excluded because this equation is being evaluated at the optimal

threshold. Accounting for fixed class prevalences and costs associated with the classification

outcomes, the optimal threshold when σ2
1 = σ2

2 is

θ∗ =
2σ2 ln(R) − µ2

1 − µ
2
2

2(µ2 − µ1)
(2.11)
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[30]. When σ2
1 , σ

2
2 the optimal threshold is

θ∗ =
µ1(b2 − 1) − a + b

√
a2 + 2(b2 − 1)σ2

1 ln(R × b)

(b2 − 1)
(2.12)

where a = µ2 − µ1 and b =
σ2
σ1

[63].

When there are three classes, there is an additional class, Z, where Zm ∼ N(µ3, σ
2
3) for

m = 1, ..., n3 . J is then defined as the sum of the three correct classification probabilities and

can be expressed using the normal CDF as

J = Φ

(
θ∗1 − µ1

σ1

)
+ Φ

(
θ∗2 − µ2

σ2

)
− Φ

(
θ∗1 − µ2

σ2

)
− Φ

(
θ∗2 − µ3

σ3

)
+ 1 (2.13)

where θ∗1 < θ
∗
2 are the optimal thresholds found to maximize J [45]. The solutions for these optimal

thresholds can be found with Equation 2.7 where the solution for θ∗1 is found with a = µ2 − µ1 and

b =
σ2
σ1

. The solution for θ∗2 is found similarly with a = µ3 − µ2 and b =
σ3
σ2

[36]. Although the

GYI has not been extended for three classes, in [45] the three-class J is generalized with weights on

each correct classification probability. Therefore, weights could be added to Equation 2.13 and the

optimal thresholds (θ∗1 < θ
∗
2) would be found numerically.

Finally, for all forms of J and GYI, if the classification feature is distributed log-normally, the

point estimate of the threshold is determined using log-transformed data. A similar development

is presented in [56] for J with two classes and a gamma distributed feature. However, for features

distributed within the Box-Cox family, transformations to normality may be used and the formulas

assuming normality applied [30, 45].

2.4.1.2 Nonparametric Methods.

For any number of classes, if no distributional assumptions about the feature used for

classification are made, J can be defined using the empirical CDF. The empirical CDF, Fn(x) ,

of a random sample of size n is defined as

Fn(x) =
1
n

n∑
i=1

I(Xi ≤ x) (2.14)

where I is the indicator function and is equal to 1 if the relation is true, and 0 otherwise [32]. For

example, in a three-class scenario (X < Y < Z), J may be defined as

J = F̂(θ∗1) + Ĝ(θ∗2) − Ĝ(θ∗1) − Ĥ(θ∗2) + 1 (2.15)

12



where F̂(θ) = 1
n1

∑n1
i=1 I(xi ≤ θ) , Ĝ(θ) = 1

n2

∑n2
j=1 I(y j ≤ θ) , Ĥ(θ) = 1

n3

∑n3
m=1 I(zm ≤ θ) , and

θ∗1 and θ∗2 are the thresholds found to maximize Equation 2.15 [45]. Methods that have been used

to determine the optimal thresholds include a smoothing kernel method on the empirical CDFs,

choosing the observations where the maximum occurs, or by random walks [45, 63].

All forms of J presented may be extended for the k-class J, where again, weights may be

placed on the correct classification probabilities to incorporate the importance of the different correct

decisions in finding the optimal point [46]. Other work on J includes consideration of special

cases such as pooled samples, corrections for measurement error, and methods for when the feature

distribution has a mass at zero [49, 54, 55].

2.4.2 Bayes Cost.

The optimal threshold found by maximizing the correct classification probabilities (via

J) is equivalent to that found by minimizing the misclassification probabilities in a two-class

framework [6, 50]. When there are more than two classes and unequal costs associated with

the misclassifications within each class, the equivalence between optimal thresholds found by

maximizing correct classification probabilities and minimizing misclassification probabilities is not

universally true. This is because it is no longer feasible to assign a simple cost benefit ratio between

the benefit of making a correct decision and the costs of making an incorrect decision [58, 65].

Therefore, finding the optimal settings can be more complex when a classification system has more

than two classes. In order to assign differing costs or benefits to the potential outcomes of a k-class

classification system, a metric that considers all differing misclassification probabilities should be

considered instead of extensions of J.

A k-class classification system results in a total of k2 correct classification and misclassification

probabilities; however, J only uses k pieces of information (k correct classification probabilities).

Therefore, by using J, k2 − k pieces of information about the classification system may be lost,

namely information about the class-specific misclassifications. A metric developed on the k2 − k

error probabilities will lose no information about the system [58] (see Theorem 1).

For this reason, the development of a metric associated with the misclassification probabilities

is of interest. Bayes Cost (BC) is a metric presented in [65] that minimizes misclassification
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probabilities for three or more classes. This metric allows for misclassification probabilities to

be weighted by the cost and class prevalence associated with each misclassification outcome.

Bayes Cost = min
θ∈Θ


k∑

i=1
i, j

k∑
j=1

ci| j p jPi| j(θ)

 (2.16)

where ci| j is the fixed cost associated with misclassifying class j as class i and p j is the fixed

prevalence for the jth class. Therefore, BC allows for the use of any cost/prevalence structure on

both the correct and misclassification probabilities.

Theorem 1. Using Bayes Cost to determine the optimal thresholds of a multi-state classification

system allows for the use of any cost/prevalence structure on any of the correct or misclassification

probabilities, therefore not losing any information about the classification system.

Proof. Let the prevalence of the class be denoted p j and the cost of a misclassification be mi, j| j

or benefit of a correct classification be bi= j| j, where the true class is denoted j = 1, 2, ..., k and

classification outcomes are denoted i = 1, 2, ..., k. The cost function to minimize would be

Cost = min
θ∈Θ

 k∑
i=1

k∑
j=1

p jmi, j| jPi, j| j(θ) +

k∑
i=1

k∑
j=1

p jbi= j| jPi= j| j(θ)

 (2.17)

Note, since the classification outcomes in each class are mutually exclusive and the sample size of

each class (n j) is fixed:
k∑

i=1

Pi| j(θ) = 1, for each j = 1, 2, ..., k (2.18)

which implies

Pi= j| j(θ) = 1 −
k∑

i=1

Pi, j| j(θ), for each j = 1, 2, ..., k (2.19)
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Substituting Equation 2.19 in Equation 2.17 gives

Cost = minθ∈Θ

[
k∑

i=1

k∑
j=1

p jmi, j| jPi, j| j(θ) +
k∑

i=1

k∑
j=1

p jbi= j| jPi= j| j(θ)
]

= minθ∈Θ

[
k∑

i=1

k∑
j=1

p jmi, j| jPi, j| j(θ) +
k∑

i=1

k∑
j=1

p jbi= j| j
(

1
k − Pi, j| j(θ)

)]
= minθ∈Θ

[
k∑

i=1

k∑
j=1

p jmi, j| jPi, j| j(θ) +
k∑

i=1

k∑
j=1

( p j
k bi= j| j − p jbi= j| jPi, j| j(θ)

)]
= minθ∈Θ

[
k∑

i=1

k∑
j=1

p jmi, j| jPi, j| j(θ) −
k∑

i=1

k∑
j=1

p jbi= j| jPi, j| j(θ) + constant
]

= minθ∈Θ

[
k∑

i=1

k∑
j=1

p jmi, j| jPi, j| j(θ) − p jbi= j| jPi, j| j(θ)
]

+ constant

= minθ∈Θ

[
k∑

i=1

k∑
j=1

p j
(
mi, j| jPi, j| j(θ) − bi= j| jPi, j| j(θ)

)]
+ constant

= minθ∈Θ

[
k∑

i=1

k∑
j=1

p j
(
mi, j| j − bi= j| j

)
Pi, j| j(θ)

]
+ constant

= minθ∈Θ

[
k∑

i=1,i, j

k∑
j=1

p jci| jPi| j(θ)
]

+ constant, where ci| j = mi, j| j − bi= j| j

= Bayes Cost + constant

=⇒ θ∗Cost = θ∗BC

(2.20)

This demonstrates that the optimal thresholds found by minimizing Bayes Cost are equivalent to

those found by minimizing a function which uses all classification outcome probabilities from the

classification system, allowing for any cost/benefit and prevalence structures to be considered. �

Assume a three-class classification system with a single feature used for classification that is

independently and normally distributed for each class, where µ1 < µ2 < µ3 . Under this framework,

BC can be expressed with the standard normal CDF and the optimal thresholds that distinguish

between the classes and minimize BC, θ∗1 < θ
∗
2 , as:

BC3 = c2|1 p1 ×

(
Φ

(
θ∗2 − µ1

σ1

)
− Φ

(
θ∗1 − µ1

σ1

))
+ c3|1 p1 ×

(
Φ

(
µ1 − θ

∗
2

σ1

))
+ c1|2 p2 ×

(
Φ

(
θ∗1 − µ2

σ2

))
+ c3|2 p2 ×

(
Φ

(
µ2 − θ

∗
2

σ2

))
+ c1|3 p3 ×

(
Φ

(
θ∗1 − µ3

σ3

))
+ c2|3 p3 ×

(
Φ

(
θ∗2 − µ3

σ3

)
− Φ

(
θ∗1 − µ3

σ3

))
(2.21)

The minimization is not expressed in Equation 2.21 as this is achieved by using the optimal

thresholds. The optimal thresholds must be found numerically when all ci| j p j are not equal, for

i , j . When all ci| j p j are equal, for i , j , Equation 2.7 may be used to find the optimal threshold
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between each set of normal distributions. Equation 2.21 may be extended for any k classes with a

single feature used for classification that is independently and normally distributed for each class,

and would require k − 1 optimal thresholds.

When there are two classes, the optimal threshold found by minimizing BC is equivalent to that

found by maximizing the GYI, Equations 2.11 or 2.12 (assuming the same costs and prevalences

used to find the optimal point). A proof of this equivalence is given in Section 2.5.2. Also, if all

ci| j p j are equal, for i , j , the optimal threshold(s) found with BC would be equivalent to those

found by maximizing J.

In a nonparametric setting, BC can be estimated using the empirical distribution function.

Letting θ = (θ1 < θ2 < ... < θk) and F j be the empirical CDF for the jth class with F j−1 < F j , for

all k classes, BC is defined as

BC = min
θ∈Θ


k∑

i=1
i, j

k∑
j=1

ci| j p j
[
F j(θi) − F j(θi−1)

] (2.22)

where F j(θ0) = 0 and F j(θk) = 1 [65]. The optimal thresholds are then found to be those which

minimize Equation 2.22.

2.5 Confidence on Optimal Point Metrics

It is critical to characterize the uncertainty in an optimal point, as such estimates are typically

constructed from data. This is most commonly accomplished by creating confidence intervals

(CIs) around the metric used to characterize the optimal point (Youden index, Bayes Cost, etc)

as well as creating confidence interval(s) around the threshold(s) which correspond to the optimal

point [30, 33, 49, 56, 76].

CIs are a statistical inference method that provide a range of values (usually an interval) for

which there is a specified level of confidence that the true parameter lies within the interval. CIs

may be constructed as either one or two sided (one sided being of the form where there is either

a lower or upper bound, but not both). This work focuses on constructing two sided confidence

intervals. If X = (X1, . . . , Xn) is a random sample, then L (X) and U (X) form a confidence

interval with confidence coefficient 1 − α for some function of the parameter θ , τ(θ) , such that

P[L (X) ≤ τ(θ) ≤ U (X)] = 1 − α [12, p. 417],[44, p.377]. Because it is known that the upper
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and lower bounds of the CI are functions of the observed data, the notation for the bounds may be

simplified by writing L (X) as τ(θ)L and U (X) as τ(θ)U .

Not all CIs perform equally well. An interval’s coverage probability and length are metrics

of a CI’s performance. If a CI with a confidence coefficient of 1 − α is constructed 100 times, it

is expected that (1 − α)100% of the intervals actually contain the true parameter of interest. This

may not always be the case, and the percent of constructed CIs that contain the true parameter is the

coverage probability of the CI. The coverage probability should be at least (1 − α)100% for a well

performing CI. CIs with coverage probability greater than (1−α)100% are considered conservative.

For all CIs that meet the desired coverage probability, it is then of interest to find the interval

with the shortest length. The length of an interval is defined as τ(θ)U − τ(θ)L . A shorter length CI

which meets the desired coverage probability provides a more precise (and therefore, arguably, a

more useful) estimate of the parameter. Another metric of CI performance is its symmetry, which

may be used to judge whether or not the true parameter of interest lies in the center of the interval,

or if the interval is skewed to one side. Mean squared error and bias of the parameter estimate may

impact CI performance and are therefore also sometimes considered, though these are not properties

of the interval itself.

2.5.1 Confidence on the Youden Index and Optimal Thresholds.

Several methods exist in the literature for constructing CIs around J and the optimal

threshold(s), mainly in a two-class setting. In addition to these methods, bootstrap methods are

also applicable, as bootstrap CIs are a general and flexible method that may be used under any

distributional assumptions of the features and classification system structure. First, parametric CI

methods are presented and following these methods, the nonparametric CI methods available for J

are presented.

A delta method approximation, which uses first order Taylor series expansions to determine

the variance of J and the optimal threshold(s), has been implemented to create CIs for J and the

resulting optimal threshold(s) for a classification system with two or three classes with a single

feature that is independently and normally distributed for each class [36, 56, 63, 64]. The delta
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method (1 − α)100% CI around J is

Ĵ ± zα/2
√

Var
(
Ĵ
)

(2.23)

where Ĵ is estimated using Equation 2.6 for two classes or Equation 2.13 for three classes and

Var
(
Ĵ
)

is approximated with the delta method as:

Var
(
Ĵ
)
≈

k∑
j=1

( ∂J
∂µ j

)2

Var(µ̂ j) +

(
∂J
∂σ j

)2

Var(σ̂ j)

 (2.24)

The covariance term from the delta method approximation is zero, due to the assumption of

independence between the classes’ feature distributions.

Assuming two classes and a normally distributed feature, X j ∼ N(µ1, σ
2
1) for j = 1, ..., n1 ,

Yi ∼ N(µ2, σ
2
2) for i = 1, ..., n2 , and µ1 < µ2 , Var

(
Ĵ
)

in Equation 2.24 is estimated by:

Var
(
Ĵ
)
≈

S 2
2

n2

 φ(̂z2) + (φ(̂z1) − φ(̂z2))
−1 + â b̂(rad)−1/2

b̂2 − 1

2

+ (−1)
S 2

1

n1

 φ(̂z1) + (φ(̂z1) − φ(̂z2))
 b̂2 + (−1)̂a b̂(rad)−1/2

b̂2 − 1

2

+
1

2(n2 − 1)


ẑ2φ(̂z2) +

(̂bφ(̂z1)−φ(̂z2))
(̂b2−1)2(S 2

1)1/2

×(2̂a b̂2 + ((−̂b2 − 1)(rad)1/2

+(S 2
2)(̂b2 − 1)(rad)−1/2(ln(̂b2) + 1 − b̂−2)))



2

+
−1

2(n1 − 1)


ẑ1φ(̂z1) +

(̂bφ(̂z1)−φ(̂z2))
(̂b2−1)2(S 2

1)1/2

×(2̂a b̂2 + ((−̂b2 − 1)(rad)1/2

+(S 2
1)(̂b2 − 1)(rad)−1/2(ln(̂b2) + b̂2 − 1)))



2

(2.25)

where ẑ2 = x−θ̂∗√
S 2

2

, ẑ1 =
θ̂∗−y
√

S 2
1

, â = y − x , b̂ =
S 2

2
S 2

1
, rad = â2 +

(̂
b2 − 1

)
S 2

1 ln
(̂
b2

)
, and φ represents

the standard normal pdf [56]. A similar formulation of the approximation of Var
(
Ĵ
)

is used for the

delta method CI for the three-class J.

The (1 − α)100% CI(s) for the optimal threshold(s) (two or three classes with a normally

distributed feature) is given by

θ∗ ± zα/2

√
Var(θ̂∗) (2.26)
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where θ̂∗ may be found with Equation 2.7 (for either optimal threshold by considering the

appropriate adjacent classes) [36, 56]. Using the delta method, the variance of θ̂∗ is approximated

with

Var(θ̂∗) ≈
(
∂θ∗

∂µ1

)2

Var(̂µ1) +

(
∂θ∗

∂σ1

)2

Var(σ̂1) +

(
∂θ∗

∂µ2

)2

Var(̂µ2) +

(
∂θ∗

∂σ2

)2

Var(σ̂2) (2.27)

The partial derivatives required for this approximation are(
∂θ∗

∂µ1

)
=

b2 + ab(rad)−1/2(−1)
b2 − 1

(2.28)(
∂θ∗

∂µ2

)
=

b2 + ab(rad)−1/2(−1)
b2 − 1

(2.29)(
∂θ∗

∂σ1

)
=
−2ab2(

b2 − 1
)2
σ1

+

b(b2 + 1)(rad)1/2(
b2 − 1

)2
σ1

−
σ1b(rad)−1/2

b2 − 1

(
ln(b2) + b2 − 1

) (2.30)(
∂θ∗

∂σ2

)
=
−2ab2(

b2 − 1
)2
σ1

+

 (−b2 − 1)(rad)1/2(
b2 − 1

)2
σ1

+
σ2b(rad)−1/2

b2 − 1

(
ln(b2) + 1 − b−2

) (2.31)

where a, b, and rad are defined as they were for Equation 2.25 [36, 56]. When there are three classes,

the variance and partial derivatives of the second optimal threshold are estimated with Equation 2.27

and Equations 2.28 to 2.31 by replacing the first class with the second and the second class with

third [36, 56].

Under the framework of the two-class GYI, the delta method has been used for developing a

CI around the optimal threshold for a classification system which utilizes a single normally or log-

normally distributed feature (but not for the GYI itself) [30]. For a CI around the optimal threshold

found with the GYI, the delta method CI is similarly developed as that for J, although the expression

allows for the cost/benefit weighting factor. When the variances are equal

Var(θ̂∗) ≈
(
ln(R)

a

)2

Var(σ̂2) +

(
1/2 +

σ2 ln(R)
a2

)2

Var(̂µ1) +

(
1/2 −

σ2 ln(R)
a2

)2

Var(̂µ2) (2.32)

This approximation may be used in Equation 2.26 to construct the CI around the optimal

threshold [30]. This CI has also been generalized for when the variances are not equal [64]. Further,

the delta method has been used to derive CIs for J and the optimal threshold when the classification

system utilizes a single feature to distinguish between two classes when the distribution of the

feature for each class is an independent gamma [56].
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In [43], the delta method CIs for the two-class J and the optimal threshold are modified by

utilizing a second order Taylor series expansion as opposed to the first order expansion used in

Equations 2.24 and 2.27. Although the extension to the delta method is presented, the performance

of the extended version is not compared to the simpler method and therefore the more complicated

derivation has not been justified. All delta method CIs are only appropriate for large sample sizes if

the desired coverage probability is to be achieved.

Generalized CIs (GCIs) are developed in [33] for J and the optimal threshold under the

assumption of a single feature used for the classification between two classes, where the feature

is independently and normally distributed for each class. These exact CIs outperform the delta

method CIs for scenarios considered in the simulation presented in [33] because they meet the

desired coverage (for small n j ≥ 10) while maintaining a CI length that is less than the delta method

CI length. This generalized method for classes with a normally distributed feature is also used for

constructing a CI on the difference in paired Youden indices in the two-class framework, allowing

for the comparison of two classification systems’ performances in a paired data structure [80].

If no assumptions are made about the distribution of the feature used for classification, a non-

parametric CI around J and the optimal threshold may be used. In [79], a CI for the two-class J is

developed with the Agrestti-Coull confidence interval for a binomial proportion (see [2]), where J

is estimated with

Ĵ =

∑n1
i=1 I(Xi ≤ θ

∗) + z2
1−α/2/2

n1 + z2
1−α/2/2

−

∑n2
j=1 I(Y j ≤ θ

∗) + z2
1−α/2/2

n2 + z2
1−α/2/2

(2.33)

A nonparametric asymptotic normal (AN) bootstrap is utilized to determine the CI bounds for

J estimated in Equation 2.33 (this method does not provide a CI for the optimal threshold).

Under various distributional assumptions, this method approaches the desired coverage probability

for n j ≥ 50. In [43], an empirical likelihood method which utilizes bootstraps is used for

constructing a nonparametric CI around J and the optimal threshold in the two-class framework.

This nonparametric method performs well with respect to coverage for samples of at least 30 in

each class.

Currently, a confidence interval around the GYI has not been presented, except for a bootstrap

CI [40].
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2.5.2 Confidence on Bayes Cost and Optimal Thresholds.

The two-class J may be written as

J = max
θ∈Θ

[
P1|1(θ) + P2|2(θ) − 1

]
(2.34)

where P1|1(θ) and P2|2(θ) are the correct classification probabilities for a threshold(s), θ ∈ Θ . The

two-class BC (with all ci| j p j assumed to be one, for i , j) may be written

BC = min
θ∈Θ

[
P2|1(θ) + P1|2(θ)

]
(2.35)

where P2|1(θ) and P1|2(θ) are the misclassification probabilities for a θ ∈ Θ . For greater utility, BC is

defined with prevalences on the two classes and different costs on misclassification errors [58, 65]:

BC = min
θ∈Θ

[
c2|1 p1P2|1(θ) + c1|2 p2P1|2(θ)

]
(2.36)

where ci| j is the fixed cost associated with misclassifying class j as class i and p j is the fixed

prevalence for the jth class.

From these definitions it is shown that for a two-class classification system, the optimal

threshold found by minimizing BC is equivalent to the optimal threshold found by maximizing

J (when all ci| j p j are equal, for i , j, Theorem 2) or by maximizing the GYI (Theorem 3) when the

costs are defined as
cGYI

1|2 − cGYI
2|2

cGYI
2|1 − cGYI

1|1

=
cBC

1|2

cBC
2|1

(2.37)

where cGYI
i| j and cBC

i| j are the costs associated with the GYI and BC, respectively. Then, a CI around

the optimal threshold found by minimizing BC would be equivalent to the CIs developed for the

optimal threshold found with J or the GYI (assuming the same statistical method for constructing

the CI is used).

Theorem 2. The optimal threshold, θ∗BC , found by minimizing Bayes Cost when all ci| j p j are

assumed equal to one, for i , j , is equivalent to the optimal threshold found by maximizing the

Youden index, θ∗J = θ∗BC , for a two-class classification system family.

Proof. Let θ∗BC and θ∗J represent the optimal thresholds found by minimizing Bayes Cost and

maximizing the Youden index, respectively. Also, let Pi| j(θ) represent the probability of classifying
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class j as class i . Then, there exits θ∗BC 3 BC = minθ∈Θ
[
P2|1(θ) + P1|2(θ)

]
and there exists

θ∗J 3 J = maxθ∈Θ
[
P1|1(θ) + P2|2(θ) − 1

]
. Now, consider

θ∗BC = arg minθ∈Θ
[
P2|1(θ) + P1|2(θ)

]
= arg maxθ∈Θ

[
1 − P2|1(θ) − P1|2(θ)

]
= arg maxθ∈Θ

[
1 − (1 − P1|1(θ)) − (1 − P2|2(θ))

]
= arg maxθ∈Θ

[
1 − 1 + P1|1(θ) − 1 + P2|2(θ)

]
= arg maxθ∈Θ

[
P1|1(θ) + P2|2(θ) − 1

]
= θ∗J

⇒ θ∗BC = θ∗J

(2.38)

�

Theorem 3. The optimal threshold, θ∗BC , found by minimizing Bayes Cost is equivalent to the

optimal threshold found by maximizing the generalized Youden index, θ∗GYI = θ∗BC , for a two-class

classification system when the costs are defined where
[
(cGYI

1|2 − cGYI
2|2 )/(cGYI

2|1 − cGYI
1|1 )

]
=

[
cBC

1|2 /c
BC
2|1

]
.

Proof. Let θ∗BC and θ∗GYI represent the optimal thresholds found by minimizing BC and maximizing

the GYI, respectively. Also, let ci| j be the fixed cost associated with classifying class j as class i ,

p j be the fixed prevalence for the jth class, and Pi| j(θ) be the probability of classifying class j as

class i for a given θ ∈ Θ . Assume
[
(cGYI

1|2 − cGYI
2|2 )/(cGYI

2|1 − cGYI
1|1 )

]
=

[
cBC

1|2 /c
BC
2|1

]
, then there exits

θ∗GYI 3 GYI = maxθ∈Θ

[
sensitivity(θ) +

1−pp
pp
×

[
cGYI

2|2 −cGYI
1|2

cGYI
1|1 −cGYI

2|1

]
× speci f icity(θ) − 1

]
and there exists
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θ∗BC 3 BC = minθ∈Θ
[
p1cBC

2|1 P2|1(θ) + p2cBC
1|2 P1|2(θ)

]
. Then

θ∗GYI = arg maxθ∈Θ

[
sensitivity(θ) +

1−pp
pp
×

[
cGYI

2|2 −cGYI
1|2

cGYI
1|1 −cGYI

2|1

]
× speci f icity(θ) − 1

]
= arg maxθ∈Θ[P1|1(θ) +

1−p1
p1
×

[
cGYI

2|2 −cGYI
1|2

cGYI
1|1 −cGYI

2|1

]
× P2|2(θ) −G]

= arg maxθ∈Θ

[
P1|1(θ) +

p2
p1
×

[
cGYI

2|2 −cGYI
1|2

cGYI
1|1 −cGYI

2|1

]
× P2|2(θ) −G

]
= arg maxθ∈Θ

[
(1 − P2|1(θ)) +

p2
p1
×

[
cGYI

2|2 −cGYI
1|2

cGYI
1|1 −cGYI

2|1

]
× (1 − P1|2(θ))

]
= arg maxθ∈Θ

[
−P2|1(θ) +

p2
p1
×

[
cBC

1|2

cBC
2|1

]
× (1 − P1|2(θ))

]
= arg maxθ∈Θ

[
−P2|1(θ) +

p2
p1
×

[
cBC

1|2

cBC
2|1

]
−

p2
p1
×

[
cBC

1|2

cBC
2|1

]
× P1|2(θ)

]
= arg maxθ∈Θ

[
1

p1cBC
2|1

(
−p1cBC

2|1 P2|1(θ) − p2cBC
1|2 P1|2(θ) + p2cBC

1|2

)]
= arg maxθ∈Θ

[
1

constant

(
−p1cBC

2|1 P2|1(θ) − p2cBC
1|2 P1|2(θ) + constant

)]
= arg maxθ∈Θ

[
−p1cBC

2|1 P2|1(θ) − p2cBC
1|2 P1|2(θ)

]
= arg minθ∈Θ

[
p1cBC

2|1 P2|1(θ) + p2cBC
1|2 P1|2(θ)

]
= θ∗BC

⇒ θ∗GYI = θ∗BC

(2.39)

�

A delta method CI for the optimal threshold found by minimizing BC is presented in [63] for

a classification system with two classes and a single feature that is independently and normally

distributed for each class. This CI is equivalent to the delta method CI for the optimal threshold

found with the GYI (Section 2.5.1) when costs are defined with Equation 2.37.

CIs on the optimal thresholds found by minimizing BC in a multi-state setting are derived

using the delta method and numerical approximations in [65]. Notably, the CI for BC was not

derived. However, in a three-class scenario, CIs on the two threshold values may not necessarily

correspond to confidence around the optimal point. A specific set of thresholds {θ1,θ2} from the

CIs around each individual threshold may be a hidden extrapolation outside the optimal threshold

region. Therefore, CIs around the optimal thresholds may not be the ideal method for quantifying

uncertainty in the optimal point, especially in a multi-state setting with more than one threshold. To

quantify uncertainty in the optimal point, CIs around the optimal point metric (J or BC) should be

considered.
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To further motivate a CI around the optimal point metric as opposed to the optimal thresholds

only, consider the following example. Assume a random draw from a classification system with

three classes (assume samples of size 50 are taken from each class), where X1 ∼ N(−3, 1),

X2 ∼ N(0, 1), and X3 ∼ N(3, 1). The delta method CIs around the two optimal thresholds found to

distinguish between the classes may be θ1 ∈ [−1.95,−1.49] and θ2 ∈ [1.45, 2.12] using the method

in [65]. Given the estimated normal distributions from the sample, this range of thresholds would

correspond to BC values from 0.207 to 0.226. However, for the same sample, the delta method

CI around BC (developed in Section 3.2) is BC ∈ [0.114, 0.301] and the true value of BC from

the assumed underlying distributions is 0.27. Therefore, values within the thresholds’ CIs do not

necessarily reflect all the uncertainty in the optimal performance of the system (measured by BC),

and in this example, overestimates the system’s performance.

Notably, the CIs around the thresholds are of use once a classification system has been chosen

for implementation. Before a classification system is chosen, however, it may be of interest to

compare competing systems based on their optimal performance in order to chose the system with

the most powerful classification ability. By constructing a CI around each classification system’s BC

value, performance at the optimal settings can be compared between systems. Currently, methods

for CIs around BC do not exist.

2.6 Hypothesis Tests for Optimal Point Metrics

A hypothesis ”is a statement about a population parameter” [12, p. 373]. In testing a hypothesis

there are two hypotheses, the null hypothesis (H0, θ ∈ Θ0) and the alternate hypothesis (H1, θ ∈ ΘC
0 ).

Both of these hypotheses make statements about the parameter space of interest, such that combined,

they cover the entire parameter space [34, p.60]. Of interest for this work would be hypotheses about

metrics of a classification system, such as J or BC. Such a hypothesis might be constructed to test

if a classification system meets some desired level of performance, for instance, to determine if a

classification system performs better than chance.

There are two types of errors which may occur when testing a hypothesis. A Type I error occurs

if the null hypothesis is rejected, when it was actually true (ie. θ ∈ Θ0). A Type II error occurs when

the null hypothesis is not rejected, when it is not true (ie. θ ∈ ΘC
0 ). Clearly, it is ideal to minimize the
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probability of committing either of the two errors. However, there is a trade-off between both errors.

Therefore, a level of significance of the test (α ∈ [0, 1]) is usually set such that the probability of

a Type I error is less than or equal to the level of significance for all θ ∈ Θ0 [34, p.61]. Then for

all tests with the desired level of significance, the test which minimizes the probability of a Type II

error would be best.

Although tests of hypotheses on J or BC would be useful when selecting a classification system,

such tests have not been developed.

2.7 Distributions for the Youden Index and Bayes Cost Inference

Making no distributional assumptions about a classification system, the classification outcomes

with respect to truth can be modeled as binomial or multinomial random variables, for k = 2 or k ≥ 3

classes, respectively. Therefore, background information on these distributions is presented in this

section.

2.7.1 Binomial Distribution.

The classification outcomes from a two-class classification system, for a fixed θ ∈ Θ , are

arranged in a contingency table in Table 2.3, where Xi| j denotes the number of observations classified

into class i with truth class j. The sample drawn from each class is fixed; consequently, the

knowledge of the total correct or incorrect observations explicitly defines the other. For that reason,

the correct or incorrect classification observations from each class are modeled as binomial(n j, pi| j),

where pi| j is the true population probability for the outcome of interest and n j is the fixed number

sampled from the jth class, j = 1, 2. The binomial probability mass function (pmf) is given,

generally, by

fX(x | n, p) = P(X = x|n, p) =

(
n
x

)
px(1 − p)n−x x = 0, 1, ...n, 0 ≤ p ≤ 1 (2.40)

The maximum likelihood estimate (MLE) of p, is p̂ = x
n .

2.7.1.1 Confidence Interval for Binomial Proportions.

Clopper and Pearson derived an exact CI for a binomial probability using fiducial limits in

1934 [13]. The Clopper-Pearson (1 − α)100% CI for p from an observed statistic, y = number of

successes, from a binomial distribution with fY (y | p) defined as the binomial pmf, is found by
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Table 2.3: Contingency table for a two-class classification system. Column labels represent truth

and row labels represent the label given by the classification system.

Class 1 Class 2

Test = 1 X1|1 X1|2

Test = 2 X2|1 X2|2

solving the following two equations for the lower and upper bound (pL and pU , respectively)

n∑
k=y

fY (k | pL) =
∑
k≥y

fY (k | pL) =
α

2
(2.41)

y∑
k=0

fY (k | pU) =
∑
k≤y

fY (k | pU) =
α

2
(2.42)

The sample space is y ∈ (0, ..., n). When y = 0 or y = n is observed, a solution cannot be found for

one of the two above equations (2.41 and 2.42) and the lower bound is 0 or the upper bound is 1,

respectively [3, p.18]. This last condition is necessary because these extreme values of Y result in

either summation for any p to be 1, due to the property of a pmf where

∑
y∈Y

fY (y | θ) = 1 (2.43)

for any θ. The closed form solution of the Clopper-Pearson interval for a binomial probability is[
1 +

n − x + 1
xF2x,2(n−x+1),1−α/2

]−1

< p <
[
1 +

n − x
(x + 1)F2(x+1),2(n−x),α/2

]−1

(2.44)

where x is the observed number of successes (x = 1, 2, . . . , n − 1) and this interval has a coverage

probability of at least (1 − α)100% for all p [2].

2.7.2 Multinomial Distribution.

A k × k contingency table is used for arranging the outcomes of a k-class classification system

for a fixed θ ∈ Θ (Table 2.4). The multivariate random variable Xj = (X1| j, X2| j, ..., Xk| j) represents

the k outcomes from a single class sampled n j times and is distributed multinomial(n j,pj =

(p1| j, p2| j, ..., pk| j)) where pi| j represents the true probability for the jth class to be classified as the

ith class,
∑k

i=1 Xi| j = n j , and
∑k

i=1 pi| j = 1 . Also, each observation can only be classified as one
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Table 2.4: Contingency table for a k-class classification system. Columns represent truth and rows

represent the label given by the classification system.

Class 1 Class 2 Class 3 .... Class k

Test = 1 X1|1 X1|2 X1|3 .... X1|k

Test = 2 X2|1 X2|2 X2|3 .... X2|k

Test = 3 X3|1 X3|2 X3|3 .... X3|k

.... .... .... .... .... ....

Test = k Xk|1 Xk|2 Xk|3 .... Xk|k

outcome, resulting in E[xi| j × xi′ | j, i , i′] = 0 . The multinomial pmf is

fX(x | n,p) = P(X1 = x1, X2 = x2, ..., Xk = xk | n,p) =

k∏
i=1

n!
xi!

pxi
i ,where xi ∈ (0, ..., n) (2.45)

Each Xi considered individually (collapsing among the other i − 1 X’s within class j) is

distributed binomial(n, pi). However, when considering all classification outcomes simultaneously,

the multinomial distribution is used as it allows for consideration of multiple classification outcomes

at once, and provides for the covariance structure between outcomes within a class. The MLEs of

the multinomial parameters are

p̂ =
(
p̂1, p̂2, ..., p̂k

)
=

( x1

n
,

x2

n
, ...,

xk

n

)
(2.46)

where each xi is the ith observed outcome and n is the total sample size [3, p.21].

2.7.2.1 Confidence Intervals for Multinomial Proportions.

In this section, methods available for simultaneous CIs for multinomial probabilities and linear

combinations of multinomial probabilities are presented. In 1963, Gold introduced a CI for the

linear combination of multinomial probabilities. Letting l = (l1, . . . , lk) denote the linear multipliers

for each probability:

k∑
i=1

li pi ∈

k∑
i=1

li p̂i ±
(
χ2

k−1,α

) 1
2

 k∑
i=1

l2i p̂i −

 k∑
i=1

li p̂i


2

1
2 (

1
n

) 1
2

(2.47)
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[26][53, p.217]. Gold also extended this for all linear combinations of several populations of

multinomial probabilities, pi j , as

∑
i j

li j pi j ∈
∑

i j

li, j p̂i j ± (χ2
r(k−1),α)

1
2 sl (2.48)

where j denotes the r populations ( j = 1, . . . , r), i denotes the c categories (i = 1, . . . , c) and

s2
l =

r∑
j=1

1
ni

 k∑
i=1

l2i j p̂i j −

 k∑
i=1

li j p̂i j


2 (2.49)

[53, p. 219]. When the linear combinations considered are contrasts, the degrees of freedom are

reduced from r(k − 1) to (r − 1)(k − 1), resulting in shorter intervals [27].

In 1964, Queensberry and Hurst found the solutions to the following quadratic equations

(
p̂i − pi

)2
= χ2

k−1,α
pi(1 − pi)

n
, i = 1, . . . , k (2.50)

produced simultaneous CIs around multinomial probabilities [51][53, p.217].

Goodman (1965) used Bonferroni intervals where

pi ∈ p̂i ± zα/2k

[
p̂i(1 − p̂i)

n

] 1
2

(2.51)

[53, p.216][71]. This is equivalent to a Wald CI with a Bonferroni correction for multiple

comparisons, but does not take into account the covariance between the multinomial parameters.

Fitzpatrick and Scott (1987) also introduced simultaneous CIs for multinomial parameters

in [22] where,

pi ∈ p̂i ±
zα/2
2
√

n
(2.52)

All of these previous methods were developed with large sample theory.

Finally, in 1995 Sison and Glaz determined that a simultaneous CI for multinomial parameters

can be found by first estimating the value of c where

v(c) = P(xi − c ≤ X∗i ≤ xi + c; i = 1, . . . , k) = 1 − α (2.53)

and X∗i has a multinomial distribution with n and p̂ = ( p̂1, . . . , p̂k) [62]. Then define

γ =
[(1 − α) − v(c)]
[v(c + 1) − v(c)]

(2.54)
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and the following skewed confidence region is recommended:(
p̂i −

c
n
≤ pi ≤ p̂i +

(c + 2γ)
n

; i = 1, . . . , k
)

(2.55)

[62]. Determining the CI in Equation 2.55 may be difficult, however this method is coded to

be implemented in SAS software [39]. The SAS code was later adapted into the MultinomialCI

package for R, which makes this CI very easy to use [52, 69].

2.8 Summary

Optimal points are important for classification systems, as they represent a system’s optimal

performance with respect to classification accuracy. Metrics for characterizing the performance of

a classification system’s optimal point are developed by the maximization of correct classification

probabilities or minimization of misclassification probabilities (i.e. J and BC). Minimization of

the misclassification probabilities allows for more flexibility in the optimal point selection, and

therefore is chosen as a focus for this work.

Little work has been done previously to quantify the uncertainty around BC. Thus, methods

for quantifying uncertainty in a classification system’s BC value are derived and presented in

the following chapters, for both parametric and nonparametric settings. Confidence intervals and

hypothesis tests are developed to provide a range of flexible inference methods.
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III. Parametric Confidence Intervals

3.1 Introduction

The purpose of this chapter is to derive CIs for BC, for any number of k classes, in order

to quantify the optimal performance of a classification system and compare systems based upon

performance criteria. These methods are developed under the assumption of a single feature that is

independently and normally distributed for each class, because the feature used for the classification

is often assumed to follow a continuous distribution, most commonly normal [23, 30, 33, 36, 40, 45,

47, 49, 54–56, 58, 64, 65, 75, 79, 80]. Placing a parametric assumption on the feature distributions

allows for the use of convenient statistical methods for the evaluation of the classification system,

with accurate results when the parametric assumptions are correct. Also, the assumption of a

normally distributed feature is useful as often transformations to normality are common place when

the feature follows a skewed continuous distribution, such as gamma or log-normal [45].

In Section 3.2, the delta method is used to approximate the variance of BC and the optimal

thresholds for the development of their associated CIs. A numerical estimation technique is also

presented as a method for efficiently estimating the partial derivatives that are required for the delta

method approximations. Numerical estimation is especially useful (and necessary) when there are

more than two classes, as it can be used to solve equations which are difficult or impossible to solve

analytically, while remaining very accurate [25, p.1]. In fact, the optimal thresholds for BC must

be found numerically (when weights on misclassification probabilities are not equal), and therefore,

their partial derivatives with respect to the normal distribution parameters (2k2 − 2k of them) must

also be solved numerically. Although the 2k partial derivatives of BC with respect to the normal

distribution parameters can be found analytically, the derivation becomes cumbersome for large k.

Therefore, numerical estimation techniques allow for easy extension of the delta method CIs to k

classes.

In Section 3.3 GCIs are derived for the k-class J and BC, again assuming a single feature that

is independently and normally distributed for each class. Although CIs for BC are the focus of this

work, the GCI for the extended J is also presented as it is not currently available in the literature.
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GCIs for the optimal thresholds are also presented. In Section 3.4, available bootstrap CI methods

which may be used when the classification system is developed with parametric assumptions

are discussed. Simulation results are presented in Section 3.5. The simulation examines the

performance of the delta and generalized CIs, and compares these CIs’ performance to that of

available bootstrap CIs. Specifically, coverage probability, coverage symmetry, length of CIs

and bias of B̂C are assessed under a variety of classification system settings, including varying

distributional parameters and costs. Finally, the results are summarized in Section 3.6.

3.2 Delta Method Confidence Intervals

The delta method uses the first order Taylor series expansion to estimate the variance of

functions of parameters [12, p.242]. A multivariate version of the delta method is given in the

following theorem.

Theorem 4 (Multivariate Delta Method).

Suppose that θ̂ is Asymptotic-Normalk(θ, b2
nΣ) with bn → 0 and that g is a real-valued

function with partial derivatives existing in a neighborhood of θ and continuous at θ
with g′(θ) = ∂g(θ)/∂θ not identically zero. Then as n→ ∞

g(̂θ) is Asymptotic-Normal[g(θ), b2
ng′(θ)Σg′(θ)T ]

[8, p. 238]

Often bn is taken to be 1
n [8, p. 238]. In Theorem 4, θ is used to represent any vector of statistical

parameters. This theorem is applied for BC and the optimal threshold values, θ∗m , which are both

functions of (µ,σ2).

3.2.1 Bayes Cost and Optimal Thresholds, 3 classes.

Recall, if the classification system is developed using a single feature for the classification

of three classes, where the feature is independently and normally distributed for each class with

µ1 < µ2 < µ3 and with two threshold values used to distinguish between the classes (denoted

θ1 < θ2), BC can be expressed using the standard normal CDF and the optimal threshold values
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which minimize BC as:

BC3 = c2|1 p1 ×

(
Φ

(
θ∗2 − µ1

σ1

)
− Φ

(
θ∗1 − µ1

σ1

))
+ c3|1 p1 ×

(
Φ

(
µ1 − θ

∗
2

σ1

))
+ c1|2 p2 ×

(
Φ

(
θ∗1 − µ2

σ2

))
+ c3|2 p2 ×

(
Φ

(
µ2 − θ

∗
2

σ2

))
+ c1|3 p3 ×

(
Φ

(
θ∗1 − µ3

σ3

))
+ c2|3 p3 ×

(
Φ

(
θ∗2 − µ3

σ3

)
− Φ

(
θ∗1 − µ3

σ3

))
(2.21)

Note that the minimization is not expressed in Equation 2.21 as it uses the optimal thresholds

(θ∗1 < θ∗2). The optimal thresholds must be estimated numerically when all ci| j p j are unequal, for

i , j . For BC defined in Equation 2.21, B̂C = g(x,S2) . Since (x,S2) are asymptotically multivariate

normal, the multivariate delta method may be applied (see Appendix A.1 for asymptotic properties

of (x, S 2)). Therefore, by Theorem 4, B̂C is Asymptotic-Normal[BC,Var(B̂C)] and the variance of

B̂C from Equation 2.21 is estimated according to the delta method using the following equation:

Var(B̂C3) ≈
(
∂BC3

∂µ1

)2

Var(µ̂1) +

(
∂BC3

∂µ2

)2

Var(µ̂2) +

(
∂BC3

∂µ3

)2

Var(µ̂3)

+

(
∂BC3

∂σ1

)2

Var(σ̂1) +

(
∂BC3

∂σ2

)2

Var(σ̂2) +

(
∂BC3

∂σ3

)2

Var(σ̂3) (3.1)

where all covariances are zero due to the assumption of independence between the feature’s

distributions for each class. Letting µ̂ j = x j and σ̂ j = S j , Var(µ̂ j) and Var(σ̂ j) are [56]

Var(µ̂ j) =
σ2

j

n j
(3.2)

and

Var(σ̂ j) =
σ2

j

2(n j − 1)
(3.3)

Thus, to estimate Equation 3.1, the partial derivative of BC3 with respect to the normal distribution

parameters, γ j (where γ j = µ j or σ j and j = 1, 2, 3), are defined

∂BC3

∂γ j
=

1
σ1

[
∂θ∗2
∂γ j

A −
∂θ∗1
∂γ j

B
]

+
1
σ2

[
∂θ∗1
∂γ j

C −
∂θ∗2
∂γ j

D
]

+
1
σ3

[
∂θ∗1
∂γ j

E +
∂θ∗2
∂γ j

F
]

+ δγ j (3.4)

where for γ j = µ j

δµ j =



1
σ1

(A − B) for j=1

1
σ2

(B −C) for j=2

− 1
σ3

(E + F) for j=3
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or for γ j = σ j

δσ j =



B
(
θ∗1−µ1

σ2
1

)
− A

(
θ∗2−µ1

σ2
1

)
for j=1

D
(
θ∗2−µ2

σ2
2

)
−C

(
θ∗1−µ2

σ2
2

)
for j=2

E
(
µ3−θ

∗
1

σ2
3

)
− F

(
µ3−θ

∗
2

σ2
3

)
for j=3

and for both µ j and σ j

A = p1
(
c2|1 − c3|1

)
φ

(
θ∗2 − µ1

σ1

)
B = p1c2|1φ

(
θ∗1 − µ1

σ1

)
C = p2c1|2φ

(
θ∗1 − µ2

σ2

)
D = p2c3|2φ

(
µ2 − θ

∗
2

σ2

)
E = p3

(
c1|3 − c2|3

)
φ

(
θ∗1 − µ3

σ3

)
F = p3c2|3φ

(
θ∗2 − µ3

σ3

)
A more detailed derivation of these results is presented in the Appendix, Section A.2. The six

partial derivatives of BC with respect to µ j and σ j in Equation 3.4 are estimated using the numerical

estimates for ∂θ∗m
∂µ j

and ∂θ∗m
∂σ j

(described in Section 3.2.3, m = 1, 2, j = 1, 2, 3) as well as µ̂ j = x j

and σ̂ j = S j . Using these estimated partial derivatives, the variance of B̂C3 is estimated. The

(1 − α)100% delta method CI for the three-class BC is

B̂C3 ± z α
2

√
Var(B̂C3) (3.5)

Confidence intervals around the optimal thresholds in addition to the CI for BC are also

of interest. There are three solutions for determining the optimal thresholds in this parametric

framework. First, when all ci| j p j are equal, for i , j , the optimal thresholds may be found

equivalently as with J (see Section 2.5.2). Therefore, the solution for the optimal thresholds is

θ∗m =
µm(b2 − 1) − a + b

√
a2 + 2(b2 − 1)σ2

1 ln(b)

(b2 − 1)
(3.6)
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where a = µm+1 − µm and b =
σm+1
σm

, m = 1, . . . , k − 1 [56]. Second, if σm = σm+1 the optimal point

is the midpoint between the means [56]:

θ∗m =
µm + µm+1

2
(3.7)

Finally, when all ci| j p j are not equal, for i , j , the optimal thresholds must be estimated using

numerical minimization (see Section 3.2.3). Whether θ∗m is found using Equation 3.6, Equation 3.7,

or numerically, the optimal thresholds’ estimates are functions of the sample mean and variance

(̂θ∗m = f (x,S2)). By Theorem 4, θ̂∗m is Asymptotic-Normal[θ∗m,Var(θ̂∗m)] , and the delta method

approximate variance for each of the two optimal thresholds is given by

Var
(̂
θ∗m

)
≈

(
∂θ∗m
∂µ1

)2

Var(µ̂1) +

(
∂θ∗m
∂µ2

)2

Var(µ̂2) +

(
∂θ∗m
∂µ3

)2

Var(µ̂3)

+

(
∂θ∗m
∂σ1

)2

Var(σ̂1) +

(
∂θ∗m
∂σ2

)2

Var(σ̂2) +

(
∂θ∗m
∂σ3

)2

Var(σ̂3) (3.8)

This estimate provides a (1 − α)100% delta method CI for each optimal threshold of θ̂∗m ±

z α
2

√
Var(θ̂∗m) , as was demonstrated in [65].

3.2.2 Bayes Cost and Optimal Thresholds, k classes.

These methods extend easily for k > 3 classes. When there are k classes, BC may be expressed

using the normal CDF as

BC =

k∑
j=2

c1| j p jΦ

(
θ∗1 − µ j

σ j

)

+

k−1∑
i=2
i, j

k∑
j=1

ci| j p j

[
Φ

(
θ∗m=i − µ j

σ j

)
− Φ

(
θ∗m=i−1 − µ j

σ j

)]
+

k−1∑
j=1

ck| j p jΦ

(
µ j − θ

∗
k−1

σ j

)
(3.9)

The (1 − α)100% CI for BC is still B̂C ± z α
2

√
Var(B̂C) where

Var
(
B̂C

)
≈

k∑
j=1

(∂BC
∂µ j

)2

Var(µ̂ j) +

(
∂BC
∂σ j

)2

Var(σ̂ j)

 (3.10)

and the partial derivatives may be estimated using Equation 3.4 for three classes, Equations A.4

through A.11 in Appendix A.3 for four classes, or the methods described in Section 3.2.3 below for

any k classes. Similarly, the (1 − α)100% CI for each optimal threshold is θ̂∗m ± z α
2

√
V̂ar(θ̂∗m) where

Var
(̂
θ∗m

)
≈

k∑
j=1

(∂θ∗m∂µ j

)2

Var(µ̂ j) +

(
∂θ∗m
∂σ j

)2

Var(σ̂ j)

 (3.11)
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When all ci| j p j are equal (WLOG assumed to be one), for i , j , the partial derivatives are given

in Equations 2.28 through 2.31 with class 1 and class 2 being replaced with class j = m and class

j = m + 1 for the mth optimal threshold (m = 1, . . . , k − 1). When the costs and prevalences are not

equal, the optimal thresholds must be found numerically and the partial derivatives are estimated

using Equation 3.13. Note that these CIs for k classes define the CIs for k = 2 and 3 classes as well.

Finally, it is worth noting that there exists covariance between each m and m + 1 threshold, due

to the thresholds’ shared dependence on the feature’s parameters of the class between them and may

be estimated with the delta method as

Cov
(̂
θ∗m, θ̂

∗
m+1

)
=

(
∂θ∗m

∂µ j=m+1

) (
∂θ∗m+1

∂µ j=m+1

)
Var(̂µ j=m+1) +

(
∂θ∗m

∂σ j=m+1

) (
∂θ∗m+1

∂σ j=m+1

)
Var(σ̂ j=m+1) (3.12)

[36]. This covariance may be used for constructing confidence regions around pairs of optimal

thresholds.

3.2.3 A Method for Numerically Estimating Partial Derivatives.

Although the solutions to the optimal thresholds, θ∗m , are functions of the distributional

parameters, they generally must be found numerically when minimizing BC. Therefore, the partial

derivatives, ∂θ
∗
m

∂µ j
and ∂θ∗m

∂σ j
( j = 1, ..., k represents the true class and m = 1, ..., k−1 denotes the optimal

thresholds), must also be estimated numerically. This can be accomplished using the two-point

central difference method [25, p. 254]. Applying this method, for γ j = µ j or σ j

∂θ∗m
∂γ j
≈
θ∗m(γ j + ε) − θ∗m(γ j − ε)

2ε
(3.13)

leaving all other normal parameters constant for each calculation. The term θ∗m(γ j±ε) is determined

using the same numerical minimization method as that used to find the optimal threshold values.

The truncation error for this difference method is O(ε2) . The ε value should be chosen to minimize

the error of the approximation, which for double precision (using 64 bits to store values) would be

Error ≈
10−16

ε
+ O(ε2) (3.14)

This error would be minimized for ε on the order of 10−16/3. Therefore, a small ε should be chosen;

however, ε should be ≥ 10−5 to avoid inflating the error caused by computer precision.
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The partial derivatives of BC can be found analytically, and were presented in Section 3.2.1

for three classes and in the Appendix, Section A.3 for four classes. For any k classes, the partial

derivatives for BC can be approximated by

∂BC
∂γ j

≈
BC(γ j + ε) − BC(γ j − ε)

2ε
(3.15)

where BC(γ j ± ε) is found using Equation 3.9 for γ j = µ j or σ j , and using equivalent values for ε

as discussed for θ∗m .

3.3 Generalized Confidence Intervals

In [33], GCIs2 are developed for the two-class J as an exact method for constructing CIs around

J and the optimal threshold when the feature used for classification is independently and normally

distributed for each class. Define ζ = (θ, δ) where θ is the parameter of interest and δ is a vector of

nuisance parameters.

Definition 1 (Generalized Pivotal Quantity).

Let R = r(X; x, ζ) be a function of X and possibly x, ζ as well. The random quantity R
is said to be a generalized pivotal quantity if it has the following two properties:
Property A: R has a probability distribution that is free of unknown parameters.
Property B: robs defined as robs = r(x; x, ζ) . . . does not depend on nuisance
parameters, δ. [73, p. 146]

Definition 2 (Generalized Confidence Interval).

If the subset Cγ of the sample space ρ of R satisfies (Pr(R ∈ Cγ) = γ), then the subset
ΘC of the parameter space given by ΘC(r) = {θ ∈ Θ | r(x; x, ζ) ∈ Cγ} is said to be a
100γ% GCI for θ. [73, p. 146]

3.3.1 Youden Index, k Classes.

In [33], a GCI is developed for the two-class J by constructing generalized pivotal quantities

(GPQs) for µ j and σ j ( j = 1, 2), and then using these pivotal quantities to construct GPQs for the

optimal threshold and J. For a classification system with k classes and a normally distributed feature,

there will be k − 1 optimal thresholds, one between each pair of normal distributions. Therefore, in

order to extend this method for k classes, k− 1 GPQs for the optimal thresholds must be determined

and used to define the GPQ for J (defined as the sum of all correct classification rates). Each optimal
2In [66] it was noted that the implementation of these GCIs is identical to constructing the CIs via Bayesian Inference

using the non-informative prior (p(µ, σ2) ∝ 1
σ2 ).
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threshold value is determined explicitly by the distributions of the two classes it divides [46]. For

this problem, J is the parameter of interest and the mean (µ j) and variance (σ2
j) from each class are

the nuisance parameters. Then (as is done in [33] for two classes) define

Rµ j = x j − t j
S j
√n j

(3.16)

Rσ j =

√
(n j − 1)S 2

j

V j
(3.17)

where

t j =
X j − µ j

S j/
√n j

(3.18)

and

V j =
(n j − 1)S 2

j

σ2
j

(3.19)

The sample mean (x j) and standard deviation (S j) are from the jth class, t j ∼ t(n j−1) , a t-distribution

random variable with n j − 1 degrees of freedom, and V j ∼ χ
2
n j−1 , a chi-square random variable with

n j −1 degrees of freedom [12, p. 218, 223]. To find the k−1 GPQs for the optimal thresholds (Rθ∗m ,

indexed on m = 1, 2, . . . , k − 1), first define the following k − 1 GPQs

Ram = Rµ j=m+1 − Rµ j=m (3.20)

Rbm =
Rσ j=m+1

Rσ j=m

(3.21)

Next, the GPQs for the k − 1 optimal thresholds are computed as

Rθ∗m =
Rµ j=m(R2

bm
− 1) − Ram + Rbm

√
R2

am + (R2
bm
− 1)Rσ j=m ln(R2

bm
)

R2
bm
− 1

(3.22)

for m = 1, 2, . . . , k − 1. Using these GPQs, the GPQ for the k-class J is defined as

RJ = Φ

(Rθ∗1 − Rµ1

Rσ1

)
+

k−1∑
j=2

Φ Rθ∗m= j
− Rµ j

Rσ j

 − Φ

Rθ∗m= j−1
− Rµ j

Rσ j

 + Φ

(Rµk − Rθ∗k−1

Rσk

)
(3.23)

It is clear that Rµ j and Rσ j do not depend on any unknown parameters and therefore, Rθ∗m and RJ

(defined only with Rµ j and Rσ j) do not depend on unknown parameters. This satisfies property A

of Definition 1. Also note, rJobs = RJ(x,S) is evaluated by using x j and S j in Equations 3.18 and

3.19 and then substituting Equations 3.18 and 3.19 into Equations 3.16 and 3.17, respectively. This
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results in Rµ j(x,S) = µ j , Rσ j(x,S) = σ j , and Rθ∗m(x,S) = θ∗m . Evaluating RJ with these values

gives RJ(x,S) = J ; therefore rJobs does not depend on any nuisance parameters and property B of

Definition 1 is met.

Finally, a CI around J can be found using Monte Carlo simulation by generating a large number

(K≈ 2,500) of random draws from t j and V j for each class, j = 1, . . . , k. Using these values in

Equations 3.16 through 3.23, K RJ values are calculated. Then the (α2 )100th and (1 − α
2 )100th

percentiles of RJ are defined to be the lower and upper bounds for the (1 − α)100% GCI around J,

respectively [33]. Also note, the (1 − α)100% GCI around each of the k − 1 optimal thresholds can

be found similarly using the appropriate percentiles of each Rθ∗m GPQ (m = 1, . . . , k − 1).

3.3.2 Bayes Cost, Equal Weights.

The GCI around BC from a classification system with equal ci| j p j, for i , j (WLOG p jci| j = 1 ,

accomplished by scaling BC by the reciprocal of the common multiplier), are found using the GPQs

for the mean, standard deviation, and k − 1 optimal thresholds in Equations 3.16 - 3.22. The mean

and variance of the feature’s distribution for each class are still the nuisance parameters, and BC is

the parameter of interest. Then the GPQ for BC is

RBC =

k∑
j=2

Φ

(Rθ∗1 − Rµ j

Rσ j

)
+

k−1∑
i=2
i, j

k∑
j=1

[
Φ

(Rθ∗m=i
− Rµ j

Rσ j

)
− Φ

(Rθ∗m=i−1
− Rµ j

Rσ j

)]
+

k−1∑
j=1

Φ

(Rµ j − Rθ∗k−1

Rσ j

)
(3.24)

It is clear, as was discussed for RJ in the previous section, that RBC is a GPQ meeting both properties

of Definition 1. The (1 − α)100% GCIs around BC and the optimal thresholds may be found using

Monte Carlo simulation as was described for J and the optimal thresholds in Section 3.3.1.

3.3.3 Bayes Cost, Unequal Weights.

In this section, the GCI for BC from a classification system with unequal ci| j p j , for i , j ,

is developed. Once again, the nuisance parameters are the mean and variance of the feature’s

distributions for each class, and the parameter of interest is BC. With unequal costs, the GPQs

for the optimal thresholds can no longer be found using the closed form solution in Equation 3.22.

Although there is no closed form solution for Rθ∗m , the optimal thresholds are functions of the mean
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and variance of each class and can be found with numerical minimization. The GPQ for BC is

defined, now with costs and prevalences on the misclassification probabilities:

RBC =

k∑
j=2

c1| j p jΦ

(Rθ∗1 − Rµ j

Rσ j

)

+

k−1∑
i=2
i, j

k∑
j=1

ci| j p j

[
Φ

(Rθ∗m=i
− Rµ j

Rσ j

)
− Φ

(Rθ∗m=i−1
− Rµ j

Rσ j

)]
+

k−1∑
j=1

ck| j p jΦ

(Rµ j − Rθ∗k−1

Rσ j

)
(3.25)

The k − 1 optimal threshold values’ GPQs (Rθ∗m) are found numerically for each of the K sets of

Rµ j and Rσ j values from Equations 3.16 through 3.19 (this requires K numerical minimizations of

Equation 3.25, resulting in K Rθ∗m values and K RBC values). Once again, Rθ∗m = f (Rµ,Rσ) and each

Rθ∗m does not depend on any unknown parameters. Therefore, as was seen for J and BC with equal

weights in Sections 3.3.1 and 3.3.2, RBC in Equation 3.25 does not depend on unknown parameters

and achieves property A of Definition 1. Also, Rµ j(x,S) = µ j , Rσ j(x,S) = σ j , and Rθ∗m(x,S) = θ∗m ,

resulting in rBCobs = RBC(x,S) = BC , which does not depend on nuisance parameters. This satisfies

property B of Definition 1. Once again, by randomly generating K values of t j and V j for each

class, K RBC and Rθ∗m values are determined with numerical minimization. Then, the (1 − α)100%

GCI around BC is determined as the (α2 )100th and (1 − α
2 )100th percentiles of RBC (or similarly, the

analogous percentiles of Rθ∗m are used to construct GCIs around the optimal thresholds).

3.4 Bootstrap Methods

Bootstrap methods were introduced by Efron in the 1970s [12, p. 478]. The bootstrap can be

used for creating CIs for large or small data samples where the assumptions inherent for other

methods are not met. With increasing computing power, the bootstrap has become a popular

method for constructing CIs. Typically, a nonparametric bootstrap sample X∗ = (X∗1, . . . , X
∗
n) is

created from a random sample X = (X1, . . . , Xn) where a new sample of size n is drawn from X

with replacement. It is also possible to draw a parametric bootstrap sample, where an underlying

distribution (FX(x | θ̂)) is assumed known and where θ̂ (or θ̂ ) is an estimate for the true parameter

θ (or parameters, θ) from the initial sample X [11]. Then, the bootstrap sample X∗ is created

by sampling n times from the distribution (FX(x | θ̂)). The work in this dissertation utilizes
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nonparametric resampling, which is the sampling procedure most commonly used. Generally, a

large number (B) of bootstrap samples (X∗) are drawn in order to construct CIs.

One common bootstrap CI assumes asymptotic normality of the parameter estimate. This is

accomplished by estimating the variance of the parameter estimate from the B bootstrap samples and

using this variance with standard normal quantiles to construct a CI. This method generates what

is known as an asymptotic normal (AN) bootstrap CI [14]. This method, however, is not robust

under transformations of the parameters, and could also possibly include values in the interval that

are not valid (for example, BC values less than zero) [11, 14]. Therefore, two other bootstrap CI

methods are considered which are the basic percentile (BP) bootstrap CI and the bias corrected

and accelerated (BCa) bootstrap CI. The advantage of the BP CI is that the resulting interval

will not include invalid values of the parameter of interest, since the CI bounds are found as the

appropriate percentiles from the B bootstrap estimates of the parameter. However, a disadvantage

to this method is that the coverage will be low when the distribution of the estimated parameter

is not symmetric [11]. The BCa CI has the same advantage of the BP CI, however also performs

well for skewed distributions of the estimated parameter [11]. All three of these bootstrap CIs are

implemented using the boot.ci function in the boot package in R [10, 15, 52]. For more information

on the bootstrap see [15].

The performance of the bootstrap CIs may be impacted by the method used for estimation of the

parameter of interest, as different estimation techniques result in different levels of bias depending

on the true scenario (here, classification system structure as well as feature distributions). For

comparison to the parametric CIs for BC presented in this chapter, the point estimates for BC and

θ∗ are estimated parametrically as is done, for example, in Equations 2.21 and 3.6, respectively.

3.5 Simulation Results

A simulation study was conducted to demonstrate the performance of the delta method and

generalized CIs around BC, and compare their performance to available bootstrap CI methods. The

performance of CIs around the optimal thresholds is also evaluated. Various classification scenarios

are considered including different sample sizes, underlying distributions of the feature used for

classification, differing costs associated with the misclassifications, and classification accuracy
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(measured by the BC value). All scenarios assume a classifier with three classes and two optimal

thresholds (θ∗1 < θ
∗
2) to distinguish between adjacent classes. Thus BC3 could range from completely

accurate, BC3 = 0.0, to misclassifying all observations, BC3 = 3.0. Five BC3 values are chosen

to demonstrate a range of classification system performances (all better than chance classification

which occurs for BC3 = 1.5). These values are BC3 = 0.27, 0.42, 0.63, 0.91, and 1.23. The

distributional parameters for each class are determined by varying each distribution’s mean and

variance in order to achieve the desired BC3 value. The parameters for all scenarios are presented

in Table 3.1.

In Section 3.5.1, it is assumed that all ci| j p j are equal, for i , j . Using this equal

cost/prevalence structure, various distributions on the feature are considered in order to study the

impact of non-normal distributions on the performance of the CI methods. Therefore, the CIs are

applied as described in this chapter, using the methods derived for normally distributed features. In

Section 3.5.2, two additional cost structures are used to determine if unequal cost scenarios alter the

CIs’ performance. These different costs are applied to the same normal distribution settings in Table

3.1 (σ3 = 1), however the resulting BC3 values change due to the multiplication of the different

costs on the misclassification probabilities. Although the normal distributions are unchanged, the

different cost structures also result in different optimal thresholds between the classes, as is expected

when accounting for the costs placed on the different classification errors.

The bootstrap CI methods considered for comparison are the BP, AN, and BCa. All bootstrap

CIs utilize 1,000 nonparametric resamples and estimate BC3 parametrically (Equation 2.21). The

optimal thresholds (θ∗1 < θ∗2) are found with Equation 3.6 or via numerical minimization for each

resample, for equal and unequal costs respectively. Equation 2.21 is also used to estimate BC3 for

the delta method CIs. A similar parametric formulation is used for the GCIs, eliminating the impact

of bias on comparisons of coverage probability between the different CI methods. Random samples

from each of the three classes are generated of sizes n j =10 to 250 from the appropriate distributions

for all scenarios. This is repeated 5000 times (3000 times for the GCIs due to computational time)

to determine the coverage probability, left and right coverage probability (for CI symmetry), and
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Table 3.1: Distributional parameters for the parametric CI simulation.

Distribution BC3 Class 1 Class 2 Class 3

Normal µ σ µ σ µ σ

(σ3 = 1) 1.23 -1 1 0 1 1 1
0.91 -1.5 1 0 1 1.5 1
0.63 -2 1 0 1 2 1
0.42 -2.5 1 0 1 2.5 1
0.27 -3 1 0 1 3 1

Normal µ σ µ σ µ σ

(σ3 = 2) 1.23 -1 1 0 1 1.2 2
0.91 -1.5 1 0 1 2 2
0.63 -2 1 0 1 2.85 2
0.42 -2.5 1 0 1 3.6 2
0.27 -3 1 0 1 4.4 2

Normal µ σ µ σ µ σ

(σ3 = 4) 1.23 -1 1 0 1 1 4
0.91 -1.5 1 0 1 2.6 4
0.63 -2 1 0 1 4.2 4
0.42 -2.5 1 0 1 5.5 4
0.27 -3 1 0 1 6.9 4

Gamma α β α β α β

1.23 1.3 1 2 1.5 3 1.738
0.91 1.3 1 2 1.5 3 3.544
0.63 1.3 1 2 1.5 5 5.340
0.42 1.3 1 2.3 3.7 5 6.463
0.27 1.3 1 2.3 3.7 5 13.696

Normal 1
2 N(µ, σ) 1

2 N(µ, σ) µ σ 1
2 N(µ, σ) 1

2 N(µ, σ)

Mixtures 1.23 1
2 N(−1, 2) 1

2 N(−.2988, 1) 0 1 1
2 N(.800, 1) 1

2 N(3.600, 1)
0.91 1

2 N(−2.235, 1) 1
2 N(−1, 2) 0 1 1

2 N(.800, 1) 1
2 N(3.600, 1)

0.63 1
2 N(−4.5, 1) 1

2 N(−2, 2) 0 1 1
2 N(1.200, 1) 1

2 N(3.600, 1)
0.42 1

2 N(−4.5, 1) 1
2 N(−2, 2) 0 1 1

2 N(2.417, 1) 1
2 N(4.817, 1)

0.27 1
2 N(−4.5, 1) 1

2 N(−2, 2) 0 1 1
2 N(5.210, 1) 1

2 N(7.610, 1)

the average CI length. Absolute bias of the point estimates is also determined and is discussed

throughout the following sections.

All simulations are run in R utilizing the boot package, and numerical minimization of BC is

performed using the optim function with method ”L-BFGS-B” [10, 15, 52]. The partial derivatives
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of the optimal thresholds with respect to the normal distribution parameters are found numerically

as described in Section 3.2.3 with the same optim function. The partial derivatives of BC with

respect to the normal distribution parameters are calculated with Equation 3.4. Due to the large

number of numeric results for this simulation, the tables of results are in the Appendix, Section B.1.

A summary of these results follow.

3.5.1 Equal Costs and Prevalences.

All costs and prevalences are assumed equal, with a multiplier on each misclassification

probability of one (i.e., ci, j| j = 3 , p j = 1
3 ). Four different feature distributions are simulated

(normal, gamma, gamma transformed to normal (via Box-Cox), and normal mixtures). In addition,

three normal distribution scenarios are considered, one with all σ j = 1 , one with σ1 = σ2 = 1 and

σ3 = 2 , and one with σ1 = σ2 = 1 and σ3 = 4 .

3.5.1.1 Performance of Confidence Intervals around Bayes Cost.

The coverage probability and length for the delta, generalized, and bootstrap CIs when all

ci| j p j are assumed equal, for i , j , are presented in Table B.1 for a feature with independent normal

distributions for each class and in Table B.2 for when the feature is not distributed normal. In

general, the delta method, generalized, and bootstrapped BCa CIs perform similarly and better than

the other two bootstrap CIs for BC3. When the feature is normally distributed (equal or unequal

variances), the length of all intervals are similar for n j ≥ 50 and the length of the delta method and

generalized CIs are slightly larger than the bootstrap CIs for n j = 10. However, the delta method CI

performs slightly better than the BCa CI when considering coverage for n j = 10 and the generalized

CI performs the best with regards to coverage for n j = 10 (only method to achieve coverage of at

least 95%). For n j ≥ 50 both the delta method and BCa CIs have similar, good coverage (≈ 93 -

95%). The GCI has better coverage than the delta method and BCa bootstrapped CIs for all sample

sizes (≈ 95 - 96%), with comparable lengths. Changing the value of σ3 does not have a significant

impact on the coverage for any of the methods.

The symmetry of the CIs for the normally distributed features are presented in Figure 3.1 for the

delta method CI and Figure 3.2 for the GCI, with σ3 = 1 and σ3 = 4 in rows 1 and 2, respectively.

The delta method CIs around BC3 for both scenarios are skewed left, with the skew becoming less
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extreme as n j increases. The GCIs demonstrate an opposite trend in skewness, although notably

much less extreme than that of the delta method (Right - Left coverage ∈ [-.04,0.04] compared to

Right - Left coverage ∈ [-10,0] for the delta method). The B̂C3 bias across all scenarios is low

for the normally distributed features, as expected (absolute bias ∈ [.00003, .05]). In general, the

absolute bias decreases as n j increases and increases when the BC3 value increases (less accurate

classification).

When the feature used for classification is distributed with an independent gamma for each

class and is not transformed to normality, coverage probability for all CI methods is greatly

diminished (see Table B.2). For all sample sizes in this scenario, the delta method and generalized

CIs perform better than the BCa CI for accurate tests (BC3=0.27 and 0.42), worse than BCa for

very inaccurate tests (BC3=1.23), and similar to the BCa CI for the other two scenarios. The one

exception is for n j = 10, where the GCI method performs better than the delta and BCa CIs. The bias

of the estimates for the gamma distributed feature is slightly worse than with the normal distributed

feature (absolute bias ∈ [.001, .09]) and follow the same trend as the normal feature with respect to

n j and BC3 values.

When the feature is distributed gamma and transformed to normality, the coverage probability

is improved (Table B.2). However, overall, the coverage is slightly worse than when the feature

is distributed normal, especially for the accurate scenarios (BC3 = 0.27). The GCI has a slight

advantage in coverage for this distributional scenario, although this results in longer intervals than

the delta and BCa CIs. The bias of the estimates for BC3 is very similar to that from normally

distributed features (absolute bias ∈ [.00002, .06]) and again has similar trends with n j and BC3.

Finally, when the feature is distributed as independent normal mixtures for each class, the coverage

probability for all methods is sporadic and poor, with the BCa CIs performing slightly better than

the other methods (Table B.2). The bias of B̂C3 for these distributions also represents the worst

of all scenarios considered (absolute bias ∈ [.001, .13]), with only slight improvements in bias for

increases in n j and decreases in BC3 value.
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3.5.1.2 Performance of Confidence Intervals around Optimal Thresholds.

The coverage probability and length of the delta, generalized, and all bootstrap CIs when all

costs are assumed equal with a normally distributed feature are presented in Table B.3 for θ∗1 and

Table B.4 for θ∗2 . Both the delta method and generalized CIs perform well with regards to coverage

for both θ∗1 and θ∗2 (≈ 91 − 97%). The GCI is the only method that achieves or exceeds the desired

coverage of 95% for n j = 10 , however achieving this coverage results in CI lengths which are

slightly longer than the other methods. For n j ≥ 50 , the delta method, generalized, and AN

bootstrap CIs perform similarly. Over all sample sizes when the variances are equal (σ3 = 1), the

GCIs have the best coverage and are only slightly longer in some scenarios.

When the variances are not equal (σ3 = 2 or 4), the coverage and lengths of all CI methods

are unchanged from the equal variance scenario for θ∗1 . However, θ∗2 depends on the third class’s

distributional parameters and therefore, the AN bootstrap CI does worse with respect to coverage

around θ∗2 for σ3 = 2 or 4. The delta method’s coverage and lengths remain the same, and the GCI’s

performance also remains fairly constant. The BP and BCa bootstrap CIs have similar and better

performance than the AN bootstrap CI when σ3 , 1 .

The bias of both optimal threshold estimates are equally good (absolute bias ∈ [.00006, .03])

when the variances are equal. The change in variance structure has no impact on the bias of θ∗1 ,

however the maximum absolute bias for θ∗2 increases from 0.02 to 0.05 when the variance of the

third class changes. Symmetry is plotted for the delta method CIs (Figure 3.1) and the GCIs (Figure

3.2) around both optimal thresholds for σ3 = 1 and σ3 = 4 , rows 1 and 2, respectively. For larger

values of σ3 , the symmetry of the delta method CI around θ∗2 becomes left skewed (row 2, Figure

3.1). Once again the GCI is less skewed than the delta method CI, and although the increase in σ3

appears to have a slight impact on the symmetry of the GCI around θ∗2 , this change is very small

compared to that seen with the delta method CI.

When the feature’s distribution for each class is an independent gamma, the performance of

all CI methods for θ∗1 and θ∗2 is extremely poor, and becomes worse as n j increases (Tables B.5

and B.6 for θ∗1 and θ∗2 , respectively). Although using a Box-Cox transformation provides a slight

increase in performance for all methods (Tables B.5 and B.6), the performance is still poor and
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coverage is sporadic. When the Box-Cox transformation is used on the gamma distributions, the

GCI and AN bootstrapped CI have a slight advantage with respect to coverage for most scenarios,

although this advantage is minimal. The bias for the estimates of the optimal thresholds for the

gamma distributions and the transformed gamma distributions is also poor. For the untransformed

gamma distributions, the absolute bias of θ∗1 ranges from .01 to .9 and is largest for BC3 values of

0.27 and 0.42. Additionally, the absolute bias of θ∗2 ranges from .0009 to 1.94 and performs best for

BC3 values of 0.63. The absolute bias increases as n j increases for both optimal thresholds. For the

transformed gamma distributions, the absolute bias of θ∗1 ranges from .02 to 4.65 and the absolute

bias of θ∗2 ranges from .04 to 1.4, demonstrating worse estimation than the untransformed gamma

distributions. Both of the threshold estimates have the largest bias for n j = 10 , and have similar

bias for n j ≥ 50 (absolute bias ∈ [.02, .09]).

All CI methods have higher coverage with the normal mixtures than for both gamma scenarios

for θ∗2 , but not for θ∗1 (coverage probability for θ∗1 with the normal mixtures is very poor). The

absolute bias of θ∗1 ranges from .04 to .17. Again, bias increases as n j increases. Also, the

bias is lowest for BC3 values of 0.91 and 1.23, which also corresponds to the best coverage for

θ∗1 . The absolute bias of θ∗2 ranges from .000004 to .2, and as n j increases the bias decreases.

Also, as the BC3 value decreases, the bias increases as does the coverage probability. The normal

mixture distributions for the third class are mixes of normals with the same variance (equal to

one) and different means. The normal mixtures for the first class have both different variances

and means. Therefore, the shape of the normal mixture will have an impact on the performance

of the CI around the threshold. The CI around the threshold associated with the mixture having

equal variances performed fairly well when compared to the threshold adjacent to the mixtures with

different variances.

3.5.2 Unequal Costs.

The unique advantage of using BC is the ability to consider different cost structures on the

misclassification outcomes. The two cost structures considered, where Cost =

[ c1|1 c1|2 c1|3
c2|1 c2|2 c2|3
c3|1 c3|2 c3|3

]
, are

Cost1 =

[
0 1 2
1 0 1
2 1 0

]
and Cost2 =

[
0 2 5
1 0 3
1 3 0

]
. All prevalences remained the same (p j = 1/3). Coverage
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Figure 3.1: Plots of the difference between right and left coverage probability (CP) for the delta

method CIs around BC3, θ∗1 , and θ∗2 to consider the symmetry of the CIs for n j = 10 (dotted line),

n j = 50 (dashed line), n j = 100 (dash-dot line), and n j = 250 (long dash line). Perfect symmetry

would result in values of zero, and negative values indicated the right coverage is worse than the left

coverage.
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Figure 3.2: Plots of the difference between right and left coverage probability (CP) for the GCIs

around BC3, θ∗1 , and θ∗2 to consider the symmetry of the CIs for n j = 10 (dotted line), n j = 50

(dashed line), n j = 100 (dash-dot line), and n j = 250 (long dash line). Perfect symmetry would

result in values of zero, and negative values indicated the right coverage is worse than the left

coverage.
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probabilities for the 95% delta, generalized and bootstrapped CIs for BC3, θ∗1 , and θ∗2 are presented

in Tables B.7 through B.9. The symmetry of the delta and generalized CIs are presented in the last

two rows of Figures 3.1 and 3.2, respectively.

Similar to the different variance structures considered in Section 3.5.1, the varying cost

structures do not have a noticeable impact on the bias or coverage probability for either BC or

the optimal thresholds for the delta method or generalized CIs. The GCIs continue to perform better

than the other methods with respect to coverage around BC at small n. For larger n, the delta and

BCa CIs both perform well with respect to coverage. The CIs around the optimal thresholds have

larger length at small n and larger BC3 values. Once again, the GCIs are the only CIs achieving the

desired coverage for n j = 10 . For n j ≥ 50 , all methods perform well with respect to coverage and

have similar lengths.

The symmetry of the delta method CIs around the optimal thresholds is altered by the different

cost structures. Cost1 distributes the costs evenly across class one and class three, resulting in

asymmetry around both optimal thresholds (θ∗1 is skewed right and θ∗2 is skewed left). Cost2 assigns

the highest costs on class three, second highest costs on class two and lowest costs on class one.

This results in the delta method CI around θ∗1 to become skewed right, while having no impact on

the symmetry of θ∗2 . Asymmetry of the delta method CIs around the optimal threshold caused by

varying the cost structure was also noted in [30] (for a two-class scenario, found using the GYI).

Interestingly, the delta method CIs around BC maintain a fairly constant asymmetry for all cost and

variance structures considered (Figure 3.1, column 1). Finally, although the varying cost structures

have some impact on the symmetry of the GCIs (Figure 3.2, rows 3 and 4), this change is once again

much smaller than that observed with the delta method CIs.

3.6 Summary

The delta method and generalized CIs were derived for BC under the assumption of a single

feature used for classification that is independently and normally distributed for each class in a

multi-state classification setting. Using simulations, the delta method CIs are shown to have good

coverage for sample sizes of 50 or larger within each class and the GCIs are shown to have good

coverage for sample sizes of 10 or more within each class, when the assumption of normality is
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met for both methods. Notably, the BCa bootstrap CI with a parametric estimate of BC performs

very similar to delta method CI around BC for most scenarios when the feature is normal. The

performance of the delta method, generalized, and BCa bootstrapped CIs around BC is degraded

when the assumption of normality is not met (for untransformed distributions). Performance of

the derived CI methods around the optimal thresholds is also studied in the simulation. The delta

method and generalized CIs around the optimal thresholds perform well when the assumption of

normality is met, and are more robust to changes in variance than the three bootstrap methods

considered. When the normality assumption is not met, all CI methods around the optimal

thresholds have poor performance, with the performance being slightly better for specific normal

mixture distributions. In addition, all CI methods are shown to be more robust to departures from

normality for CIs around BC when compared to the same CI methods around the optimal thresholds.

Finally, the GCIs performed the best with respect to coverage for a normally distributed feature (all

sample sizes) with similar lengths as the other methods. The GCI have slightly longer lengths for

the small sample size scenarios (n j = 10). However, the GCIs are the only method achieving the

desired coverage for this sample size, and therefore the longer length is expected. Therefore, the

GCIs are recommended for all sample sizes and costs, and the delta method CIs may also be used

for any large sample size and cost scenario (both for a normally distributed feature).

When all ci| j p j are equal, for i , j , performance of CIs around BC may be compared to CI

methods for J, as these two metrics measure performance equivalently (see Theorem 1). Currently,

there are more CI methods available for J, although notably usually only for two classes. In general,

the literature which proposes CIs for J use inconsistent bootstrap methods for comparison of the new

methods’ performance, making comparisons across all methods difficult. In [36], several estimates

of J were considered for the bootstrap CIs (parametrically, empirically, Gaussian kernel smoothing,

and kernel smoothing with Sheather-Jones algorithm), however, only BP CIs were presented which

were shown in this chapter to only perform well for very large samples when considering a CI

around BC. In [64], the empirical and parametric estimate of BC were both considered for the

bootstrap CIs, however again, only the BP CI was utilized. Three bootstrap CI methods (BP, AN,

and BCa) were used in [56], however, only empirical estimates of J and the optimal thresholds were
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used with the bootstraps instead of parametric estimates for comparison to the delta method CIs

(with the bootstrap CI performing worse than the delta method CI). This is expected, since in [45], it

was shown that when classification systems result from a normally distributed feature, an empirical

estimate of J has larger bias than the parametric estimate. Finally, in [33], a parametric resample is

used with the assumption of a single feature with independent normal distributions for each class,

with fairly good results. All other methods discussed utilize a nonparametric resample of the data.

It would seem that if the feature is assumed to be normally distributed, then such an assumption

should extend to the comparative methods, which suggests that the parametric estimation of BC

with a BCa bootstrap is the appropriate bootstrap method. In this chapter it was shown that for

a CI around BC (or similarly J) a parametric estimate of BC with a BCa bootstrap CI performs

very similar to the delta method CI, and therefore is recommended for use when implementing a

bootstrap CI for BC with a normally distributed feature. This bootstrap method outperforms those

with empirical estimates of BC or J as the empirical estimate results in a higher bias compared to the

parametric estimate [36, 45]. However, the BCa CI does not perform as well as the GCI around BC

for a normally distributed feature with small sample sizes (n j = 10) or as well as the delta method

CI for accurate classification scenarios with a gamma distributed feature.

Another result of interest from the simulation study is the consistency of the delta method CI

around BC to be skewed left (under all distributional and cost structures considered). This appears

to be a result of the BC metric being the minimization of the misclassification rates (subject to

prevalence and cost multipliers). This skewness is not seen with the GCI. Although asymmetrical,

the delta method CIs still achieve the desired coverage probabilities and therefore the asymmetry

is not necessarily a point of concern. The delta method CIs around the optimal thresholds are

symmetric for equal variance of the feature’s distribution for each class and balanced cost structures.

Changing the variance or cost structure will impact the symmetry of the optimal thresholds’ delta

method CIs, as might be expected. In [30], asymmetry of the delta method CI around the optimal

threshold was also noted when using the GYI for varying values of R (the prevalence and cost/benefit

ratio) in the two-class framework with a normally (or log-normally) and independently distributed

feature. Again, although the symmetry of the delta method CI is changed, the coverage still

52



meets desired levels for large n. Much smaller asymmetries are observed with the GCIs. Because

symmetry is expected to behave similarly for other comparable scenarios of BC and threshold CIs,

it will not be examined further in other methods.

Numerical estimation of the partial derivatives required for implementation of the delta method

makes the application of the delta method CIs in this chapter (especially for k > 3 classes)

more tangible. The methods presented in this chapter are especially useful since transformation

techniques, such as the employed Box-Cox transformation, can be used to transform data to

normality in order to meet the required assumptions so long as the underlying distributions lie in

the Box-Cox family [45]. In Section 3.5, it is shown that the delta and generalized CIs around BC

perform well and the CIs for the optimal thresholds do not perform well with respect to coverage

for data transformed to normality. This further illustrates the usefulness of the CI around BC for

choosing the best classifying feature, even when the optimal thresholds require further study to be

determined accurately.
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IV. Nonparamteric Confidence Intervals

4.1 Introduction

A CI for BC that does not require information about the structure of the classification system

or feature distributions is derived in this chapter for any k classes. A nonparametric method for

constructing a CI around BC is useful because small data sets or classifiers where distributional

assumptions are not suitable occur regularly [5, 35, 37, 38, 57, 59]. Current nonparametric methods

for J require large sample sizes (see Section 2.5.1). Although no distributional assumption is placed

on the underlying feature(s), the classification outcomes from each class resulting from a fixed θ ∈ Θ

are modeled with independent multinomial distributions.

This nonparametric CI around BC is developed in Section 4.2 using the fiducial argument.

Available bootstrap methods that may be used in the nonparametric framework for constructing a

CI around BC are presented in Section 4.3. In Section 4.4, simulations are used to demonstrate

the performance of the newly developed method in Section 4.2 and compare its performance to

other available CIs around BC in two- and three-class scenarios. Scenarios where the underlying

classification system is unknown and scenarios with known normal distributions are considered. In

Section 4.5, the newly developed method is compared further with available methods for developing

simultaneous CIs around multinomial probabilities. Section 4.6 contains a summary of the results.

4.2 Fiducial Intervals

This section develops a CI for BC that requires no underlying distributional assumptions on the

classification system. This CI is developed using the fiducial approach which was first introduced in

1930 by R.A. Fisher in his paper, ”Inverse Probability” [21]. The fiducial argument has been used

successfully for similar inference on statistical parameters [31, 74, 78], one very popular example

being the Clopper-Pearson CI 3 for a binomial proportion (see Section 2.7.1.1) [13, 72]. The method

developed in this section may be implemented for any (small) sample, k-class classification system

and has a minimum coverage of (1 − α)100%.

3Or fiducial interval, as these two terms are used interchangeably by Clopper and Pearson [13, 72]
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The proposed CI requires only the observed classification outcomes, and assumes the outcomes

are distributed multinomial. Section 4.2.1 derives the proposed method using the fiducial argument

for the k-class BC with all ci| j p j equal, for i , j . In Section 4.2.2, the method is extended for

BC with unequal costs and prevalences. An algorithm for computing the upper and lower bounds is

presented in Section 4.2.3 and an equivalence to a multiple of the Clopper-Pearson CI under specific

conditions is also presented in Section 4.2.3.2. Finally, this method may be used equivalently for J,

which is shown in Section 4.2.4.

Definition 3 (Fiducial Interval). A (1−α)100% fiducial interval for a parameter θ is the set of values

of θ which could have given rise to the observed value Y=y with the specified probability 1− α, and

Y = t(X1, ..., Xn) a statistic from the random sample X1, ..., Xn with distribution FY (y|θ) [72].

Therefore a (1 − α)100% fiducial interval for a parameter θ derived from an observed statistic

Y = t(X1, ..., Xn) can be found as the solutions for θL and θU in the following equations [72]:

Pr(Y ≥ y | θL) =
α

2
(4.1)

Pr(Y ≤ y | θU) =
α

2
(4.2)

4.2.1 Bayes Cost with Equal Weights.

Initially, it is assumed that all ci| j p j are equal to one, for i , j4. Then BC can be expressed as

the sum of the k2 − k misclassification probabilities resulting from the k-class classification system.

Here, the minimization is excluded because it is assumed the classifier is applied at its optimal

setting, or more generally at a fixed setting. Specifically,

BC =

k∑
i=1
i, j

k∑
j=1

pi| j (4.3)

where each pi| j is the probability of classifying an observation from class j as class i ( j = 1, . . . , k

and i = 1, . . . , k) . The statistic used to estimate BC is Y = B̂C where

Y =

k∑
i=1
i, j

k∑
j=1

Xi| j

n j
(4.4)

4As long as all multipliers on each misclassification probability are equal, the multiplier can be scaled to one without
changing the classification outcomes.
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Each Xi| j is a multinomial random variable representing the number of observations classified as the

ith class when their true class is j , and n j is the total number of observations for the jth class.

The statistic Y is a function of discrete random variables representing a projection into the one

dimensional rational space (Q), and can be ordered (possibly with ties). From Equations 4.1 and

4.2, the (1 − α)100% fiducial interval for BC from an observed statistic Y = y is determined by the

values of BCL and BCU that are the solutions to the following equations:

Pr(Y ≥ y | BCL) =
α

2
(4.5)

Pr(Y ≤ y | BCU) =
α

2
(4.6)

To find these solutions, the probability distribution of Y with respect to BC must be determined.

For each class, Xj = (X1| j, . . . , Xk| j) ∼ multinomial(pj, n j) , where each Xi| j is a nonnegative integer

and
∑k

i=1 Xi| j = n j . The multinomial pmf for Xj is of the form

fXj(xj) = n j!
k∏

i=1

pxi| j

i| j

xi| j!
(4.7)

[12]. Therefore, the joint pmf for all k2 random variables, X = (X1, . . . ,Xk) , from the k independent

multinomial distributions resulting from the k-class classifier is

fX(x | p) =

k∏
j=1

fXj(xj)

=

k∏
i=1

k∏
j=1

n j!
pxi| j

i| j

xi| j!
(4.8)

Let S represent the probability parameter space for the entire experiment, p ∈ S = {p =

(p1, . . . ,pk) : pj = (p1| j, . . . , pk| j), pi| j ≥ 0 , and
∑k

i=1 pi| j = 1} . Also let A be the joint

multinomial sample space that is the set of 1 × k2 sized vectors where A = {x = (x1, . . . , xk) :

xk = (x1| j, . . . , xk| j), xi| j ∈ Z+,
∑k

i=1 xi| j = n j} . For a single multinomial distribution, there are n + k − 1

n

 (4.9)

distinct elements in the sample space. For example, for k = 3 outcomes and n = 2 observations

from a single multinomial experiment, there are six elements (shown in Table 4.1). In addition, for
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Table 4.1: The multinomial sample space for 3 outcomes and n = 2 . Each row represents a potential

draw from the multinomial experiment.

X1| j X2| j X3| j

2 0 0
1 0 1
1 1 0
0 0 2
0 1 1
0 2 0

a k-class classification system, there are

k∏
j=1

 n j + k − 1

n j

 (4.10)

distinct ways of sampling from this joint multinomial experiment (ie. number of elements in A).

Clearly, as k and each n j increase, this sample space becomes large. For the previous example where

k = 3 , if each n j = 2 there are 216 distinct ways of sampling from the joint multinomial experiment.

With the assumption of all ci| j p j being equal, for i , j , the sum of the k − 1 misclassification

rates for each class may be treated as a total misclassification rate for that class. BC can then

be defined using the total misclassifications only, as it is unnecessary to distinguish between the

types of misclassifications (e.g. X2|1 vs X3|1). For simplicity of notation, the sum of the k − 1

misclassification probabilities from each class is denoted p jc | j :

p jc | j =

k∑
i=1
i, j

pi| j (4.11)

The total number of misclassified observations from each class is denoted X jc | j :

X jc | j =

k∑
i=1
i, j

Xi| j (4.12)

The independent multinomial distributions can be collapsed into k independent binomial

distributions, with the total misclassifications representing success and the correct classifications

58



representing failure in each class. Thus for each fixed j ,

∑k
i=1 Xi| j = n j

⇒ Xi= j| j +
∑k

i, j Xi| j = n j

⇒ X jc | j = n j − Xi= j| j

⇒ # of misclassifications = n j − # of correct classifications

⇒ X jc | j ∼ Bin(n j, p jc | j)

(4.13)

Considering only the total misclassifications for each class (modeled as independent binomial

random variables), the size of the sample space for the classification system is reduced to

k∏
j=1

(n j + 1) (4.14)

The reduction of the sample space is demonstrated in Table 4.2 with a single class from the previous

example, where k = 3 and n = 2 . In this example, the number of elements in the sample space for

one class is reduced from six (multinomial sample space) to three (binomial sample space).

Therefore, the joint pmf for the k2 independent multinomial random variables, X =

(X1|1, X2|1, . . . , Xk−1|k, Xk|k) , can be expressed using the joint pmf for k independent binomial random

Table 4.2: A multinomial sample space reduced to a binomial sample space for 3 outcomes and

n = 2 . Each row represents a potential draw from the experiment (assuming the truth class is 1,

therefore X1|1 is the correct classification)

X1|1 X2|1 X3|1 X1|1 X2|1 + X3|1 X1|1 X jc |1

2 0 0 2 0 + 0 = 0 2 0 = n − 2
1 0 1 1 0 + 1 = 1 1 1 = n − 1
1 1 0 → 1 1 + 0 = 1 → 0 2 = n − 0
0 0 2 0 0 + 2 = 2
0 1 1 0 1 + 1 = 2
0 2 0 0 2 + 0 = 2
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variables, X = (X1c |1, . . . , Xkc |k) , where each X jc | j is a nonnegative integer and 0 ≤ X jc | j ≤ n j :

fx(x | p) =

k∏
j=1

fXj(xj)

=

k∏
j=1

n j!

(
p jc | j

)x jc | j

x jc | j!

(
1 − p jc | j

)x j| j

x j| j!

=

k∏
j=1

(
n j

x jc | j

) (
p jc | j

)x jc | j
(
q jc | j

)(n j−x jc | j

)
(4.15)

Here, q jc | j = (1 − p jc | j) and p = (p1c |1, . . . , pkc |k) is a vector of the k total misclassification

probabilities from the classification system.

RecallA is the joint multinomial sample space. Let the reduced sample space, B , be the joint

binomial sample space that is the set of 1 × k sized vectors where B = {x = (x1c |1, . . . , xkc |k) : x jc | j ∈

Z+, x jc | j ≤ n j} . Then the sample space for Y = B̂C is Y = {y : y =
k∑

i=1,i, j

k∑
j=1

xi| j
n j
, x ∈ B} . Therefore,

the pmf of Y with respect to the binomial probabilities p = (p1c |1, . . . , pkc |k) can be written in terms

of the joint binomial distribution as

fY (y | p) = P(Y = y | p)

= P


k∑

i=1
i, j

k∑
j=1

Xi| j

n j
= y | p


=

∑
x∈B
Y=y

fX(x | p) (4.16)

where fX(x | p) is defined in Equation 4.15. The last line in Equation 4.16 is a summation because

it is possible to have more than one x ∈ B that results in Y = y (these are ties in the ordered sample

space). For example, if k = 3 and each n j = 2 , an observed B̂C = 0.5 will occur if there is

one misclassification out of the total six observations. There are three ways of observing only one

misclassification from this experiment, resulting in the ties in the sample space for Y = y . These

ties are shown in Table 4.3.

Using Equation 4.16, the CDF of Y with respect to p = (p1c |1, . . . , pkc |k) is

FY (y | p) =

y∑
t=0

fY (t | p) =

y∑
t=0

∑
x∈B
Y=t

fX(x | p) (4.17)
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Table 4.3: Ties in the joint binomial sample space for 3 classes, n j = 2 , and B̂C = 0.5 . Each row

represents an element from the joint binomial experiments.

Class 1 (X1c |1) Class 2 (X2c |2) Class 3 (X3c |3) B̂C

0 0 1 0.5
0 1 0 0.5
1 0 0 0.5

For each fixed BC, there exists infinite p = (p1c |1, . . . , pkc |k) such that pT 1 = BC (where 1 is a k × 1

sized vector of ones), resulting in different values of FY (y | p) for a given BC and observed y = B̂C

(except for the trivial cases where BC = 0 or BC = k). This makes finding a unique solution for the

fiducial bounds on BC, given in Equations 4.5 and 4.6, impossible. To demonstrate multiple values

of FY (y | p) for each fixed BC, an example where y = 0.5 (left) and y = 1 (right) is shown in Figure

4.1. This example plots FY (y | p) (Equation 4.17, plotted with black dots) against BC with multiple

p (pT 1 = BC). Therefore, define F1
Y (y | BC) to be the maximum value of FY (y | p) for each fixed

BC = pT 1 and F2
Y (y | BC) to be the minimum value of FY (y | p) for each fixed BC = pT 1 . Then

these two functions are one-to-one and onto from BC to the FY (y | p) space, and unique solutions

for the fiducial bounds can be found. These two new functions are shown in Figure 4.1 where the

blue line is F1
Y (y | BC) and the red line is F2

Y (y | BC) . These functions can be expressed using

Equation 4.17 as

F1
Y (y | BC) = max

p:pT 1=BC
BC∈BC


∑
t≤y

∑
x∈B
Y=t

fX(x | p)

 (4.18)

F2
Y (y | BC) = min

p:pT 1=BC
BC∈BC


∑
t≤y

∑
x∈B
Y=t

fX(x | p)

 (4.19)

where BC is the BC sample space such that BC = {BC : BC = pT 1,p = (p1c |1, . . . , pkc |k), pic | j ∈

[0, 1]} .
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Figure 4.1: Example of Fy(y | p) vs BC for an observed y = 0.5 (left) and y = 1 (right).

Combining Equations 4.18 and 4.19 with Equations 4.5 and 4.6, the lower (BCL) and upper

(BCU) bounds for the (1 − α)100% fiducial interval for BC from an observed statistic y are:

BCL = sup

BC ∈ BC such that 1 − min
p:pT 1=BC


∑
t≤y∗

∑
x∈B
y=t

fX(x | p)

 ≤ α

2

 (4.20)

BCU = inf

BC ∈ BC such that max
p:pT 1=BC


∑
t≤y

∑
x∈B
y=t

fX(x | p)

 ≤ α

2

 (4.21)

where y∗ is the ordered value of Y ∈ Y directly less than y. When y = 0 or y = k , the lower

bound is BCL = 0 and the upper bound is BCU = k , respectively. This is due to the fact that

Y ∈ [0, k] when all ci| j p j are assumed equal to one, for i , j , making Pr(Y ≥ 0 | BC) = 1 and

Pr(Y ≤ k | BC) = 1 . The upper and lower bounds expressed in Equations 4.20 and 4.21 may be

found by searching all p within a certain tolerance, which motivates using inequalities to meet the

minimum coverage desired. The coverage of this CI is addressed in the following theorem.
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Theorem 5. The upper and lower bounds for BC given by

BCL = sup

BC ∈ BC such that 1 − min
p:pT 1=BC


∑
t≤y∗

∑
x∈B
y=t

fX(x | p)

 ≤ α

2

 (4.20)

BCU = inf

BC ∈ BC such that max
p:pT 1=BC


∑
t≤y

∑
x∈B
y=t

fX(x | p)

 ≤ α

2

 (4.21)

create a (1−α)100% fiducial interval around BC when weights on misclassification costs are equal

with a confidence coefficient of at least (1 − α)100%.

Proof. Let BC ∈ BC , y = B̂C , and p = (p1c |1, . . . , pkc |k) be k joint binomial total misclassification

probabilities from a k-class classification system. Since BC =
∑k

i,1
∑k

j=1 pi| j , any small increase of

ε in any one pi| j will result in an increase of ε in BC. For the upper bound this results in,

Pr(Y ≤ y | BCU) ≤ max
p:pT 1=BCU

BCU∈BC


∑
t≤y

∑
x∈B
Y=t

fX(x | p)


⇒ Pr(Y ≤ y | BCU) ≤

α

2
(4.22)

Now let y∗ be the ordered value of Y ∈ Y directly less than y. Then for the lower bound,

Pr(Y ≥ y | BCL) ≤ 1 − min
p:pT 1=BCL

BCL∈BC


∑
t≤y∗

∑
x∈B
Y=t

fX(x | p)


⇒ Pr(Y ≥ y | BCL) ≤

α

2
(4.23)

The confidence coefficient for any CI is given generally in [72] as

Pr(θL < θ < θU) = Pr(Y < y | θL) − Pr(Y ≤ y | θU) (4.24)

Therefore for the fiducial interval around BC

Pr(BCL < BC < BCU) = Pr(Y < y | BCL) − Pr(Y ≤ y | BCU)

= 1 − Pr(Y ≥ y | BCL) − Pr(Y ≤ y | BCU)

≥ 1 −
α

2
−
α

2
= 1 − α

⇒
[
Pr(BC ∈ [BCL, BCU] | y)

]
≥ 1 − α (4.25)

�
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The proof for Theorem 5 does not depend on the sample size used to develop the fiducial

interval. Therefore, the minimum desired coverage of (1−α)100% will be met for any sample size,

making this method appropriate for small samples where approximate methods fail to achieve the

necessary coverage. Also, this method relies on ordering the sample space of the k joint independent

binomial distributions. This sample space becomes large as k and each n j increase, making this

method, in addition to being suitable, more practical for small samples.

4.2.2 Bayes Cost with Unequal Weights.

When all ci| j p j are not equal, for i , j , the method for finding the fiducial interval around BC

becomes more involved compared to when all multipliers are equal. First, the outcomes from the

classification system can no longer be reduced to binomial random variables. BC is more generally

defined in this scenario as,

BC =

k∑
i=1
i, j

k∑
j=1

ci| j p j pi| j (4.26)

where each pi| j is the probability of classifying an observation from class j as class i , p j is the

prevalence of class j , and ci| j is the cost associated with classifying class j as class i ( j = 1, . . . , k

and i = 1, . . . , k), and the minimization is excluded because it is assumed the classification system

is applied at its optimal settings. The statistic used to estimate BC is Y = B̂C ,

Y =

k∑
i=1
i, j

k∑
j=1

ci| j p j
Xi| j

n j
(4.27)

Because each misclassification with respect to truth must be considered uniquely (for example,

X2|1 vs X3|1), the k2 random variables X = (X1|1, X2|1, . . . , Xk−1|k, Xk|k) must be modeled with the

multinomial distribution5

fX(x | p) =

k∏
j=1

fXj(xj)

=

k∏
i=1

k∏
j=1

n j!
pxi| j

i| j

xi| j!
(4.8)

5To reduce computation time when searching for the lower and upper CI bounds on BC, if any of the k classes have
equal weights on the class misclassifications, this class’s total misclassification may be modeled as binomial, and the
binomial pmf may be used for that specific fXj (xj) .
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Here X = (X1|1, X2|1, . . . , Xk−1|k, Xk|k) and p ∈ S = {p = (p1, . . . ,pk) : pk = (p1| j, . . . , pk| j), pi| j ≥ 0 ,

and
∑k

i=1 pi| j = 1} . Again let A be the joint multinomial sample space defined in Section

4.2.1. Similar to the method in Section 4.2.1, the CDF of Y with respect to the multinomial

misclassification probabilities can be written as

FY (y | p) =

y∑
t=0

fY (t | p) =

y∑
t=0

∑
x∈A
Y=t

fX(x | p) (4.28)

where fX(x | p) is defined in Equation 4.8 and Y = {y : y =
k∑

i=1,i, j

k∑
j=1

ci| j p j
xi| j
n j
, x ∈ A} .

When all ci| j p j are not equal, for i , j , BC is no longer defined simply as the sum of the

misclassification probabilities. Therefore, any small increase of ε in any one pi| j will not necessarily

result in an increase of ε in BC. It is clear that when the weights are different, a small increase in any

one pi| j will have a different impact on BC depending on the specific misclassification probability’s

cost and prevalence. Therefore if F1
Y (y | BC) and F2

Y (y | BC) are defined as they were for equal

weights in Equations 4.18 and 4.19 in Section 4.2.1, the coverage probability of the CI will not

be guaranteed for unequal costs of misclassification. Instead, a small adjustment is made to these

definitions to ensure coverage for CI around BC with unequal costs or prevalences meets the desired

level of 1 − α. Define two step functions,

F3
Y (y | BCU) = max

BC≥BCU

[
F1

Y (y | BC)
]

= max
BC≥BCU

 max
p:pT c=BC

BC∈BC


∑
t≤y

∑
x∈A
y=t

fX(x | p)


 (4.29)

F4
Y (y | BCL) = max

BC≤BCL

[
1 − F2

Y (y | BC)
]

= max
BC≤BCL

1 − min
p:pT c=BC

BC∈BC


∑
t≤y

∑
x∈A
y=t

fX(x | p)


 (4.30)

where c is a vector of the constant multipliers to be placed on each misclassification probability

(c = (c1, . . . , ck) , where cj = (c1| j p j, . . . , ck| j p j) , and ci| j p j ∈ R+). A plot of F1
Y (y | BC) ,

1 − F2
Y (y | BC) , F3

Y (y | BC) , and F4
Y (y | BC) is presented in Figure 4.2 for an example scenario

where B̂C = 0.99 when n1 = 3 , n2 = 5 , n3 = 6 , and Cost =

[
0 3 5
3 0 1
1 5 0

]
(all p j are assumed equal to

1
3 ).
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BC

BC

Figure 4.2: Example of F3
Y (y | BCU) and F4

Y (y | BCL) plotted vs BC for an observed B̂C = 0.98889

when n1 = 3 , n2 = 5 , n3 = 6 , and Cost =

[
0 3 5
3 0 1
1 5 0

]
. The values for F1

Y (y | BC) and 1−F2
Y (y | BC) are

plotted with the decreasing and increasing black dots, respectively. Then the values for F3
Y (y | BCU)

are plotted with the blue solid line and for F4
Y (y | BCL) with the red dashed line. The black horizontal

line is drawn at α
2 = 0.025.

The (1−α)100% fiducial interval for BC from an observed statistic y is the BCL and BCU given

by:

BCL = sup

BC ∈ BC such that max
p:pT c≤BC


∑
t≥y

∑
x∈A
y=t

fX(x | p)

 ≤ α

2

 (4.31)

BCU = inf

BC ∈ BC such that max
p:pT c≥BC


∑
t≤y

∑
x∈A
y=t

fX(x | p)

 ≤ α

2

 (4.32)

and BC is the parameter space for BC with unequal weights where BC = {BC : BC = pT c, c =

(c1, . . . , ck), cj = (c1| j p j, . . . , ck| j p j), and ci| j p j ∈ R+,p ∈ S} . When y = 0 or y = sup{Y} , the lower

bound is BCL = 0 and the upper bound is BCU = sup{BC} , respectively. This is due to the fact

that Y ∈ [0, sup{Y}] when all ci| j p j are not equal, for i , j , and all ci| j p j are greater than or equal
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to zero, making Pr(Y ≥ 0 | BC) = 1 and Pr(Y ≤ sup{Y} | BC) = 1 . The lower and upper bounds

given in Equations 4.31 and 4.32 may be found by searching all p within a certain tolerance, which

is why they are solved using inequalities to meet the desired minimum coverage. The coverage of

this CI is addressed in the following theorem and proof.

Theorem 6. The upper and lower bounds for BC given by

BCL = sup

BC ∈ BC such that max
p:pT c≤BC


∑
t≥y

∑
x∈A
y=t

fX(x | p)

 ≤ α

2

 (4.31)

BCU = inf

BC ∈ BC such that max
p:pT c≥BC


∑
t≤y

∑
x∈A
y=t

fX(x | p)

 ≤ α

2

 (4.32)

create a (1 − α)100% fiducial interval around BC when weights on misclassification rates are not

equal with a confidence coefficient of at least (1 − α)100%.

Proof. Let BC ∈ BC , y = B̂C , p ∈ S be the k joint multinomial probabilities from a k-

class classification system, and c = (c1, . . . , ck), cj = (c1| j p j, . . . , ck| j p j), and ci| j p j ∈ R+. Also,

BC =
k∑

i=1,i, j

k∑
j=1

ci| j p j pi| j . For the upper bound this results in,

Pr(Y ≤ y | BCU) ≤ max
BC≥BCU

 max
p:pT c=BC

BC∈BC


∑
t≤y

∑
x∈A
y=t

fX(x | p)




⇒ Pr(Y ≤ y | BCU) ≤
α

2
(4.33)

Now let y∗ be the ordered value of Y ∈ Y directly less than y. Then for the lower bound,

Pr(Y ≥ y | BCL) ≤ max
BC≤BCL

1 − min
p:pT c=BC

BC∈BC


∑
t≤y∗

∑
x∈A
y=t

fX(x | p)




⇒ Pr(Y ≥ y | BCL) ≤
α

2
(4.34)
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The confidence coefficient for the fiducial interval around any BC is

Pr(BCL < BC < BCU) = Pr(Y < y | BCL) − Pr(Y ≤ y | BCU)

= 1 − Pr(Y ≥ y | BCL) − Pr(Y ≤ y | BCU)

≥ 1 −
α

2
−
α

2
= 1 − α

⇒
[
Pr(BC ∈ [BCL, BCU] | y)

]
≥ 1 − α (4.35)

�

Once again, the proof for Theorem 6 does not depend on the sample size used to develop the

fiducial interval, and therefore the minimum desired coverage of (1 − α)100% will be met for any

sample size. Also, using the definition of the confidence coefficient,

Pr(BCL < BC < BCU) = Pr(Y < y | BCL) − Pr(Y ≤ y | BCU) (4.36)

the confidence coefficient for this CI for any BC = pT 1 can be calculated. However, the specific p

must be known in order to determine the probability of observing each X in the A sample space.

For this reason, the confidence coefficient can be calculated for a specific set of misclassification

probabilities for each class, but not explicitly for a given BC, because there are infinite p that could

result in each BC (except the trivial cases where BC = 0 or BC = sup{BC}).

4.2.3 Fiducial Interval around Bayes Cost Algorithm.

A general procedure is presented for finding the fiducial interval around BC in Section

4.2.3.1. A simplified procedure is presented in Section 4.2.3.2 for scenarios where the weights

on misclassiifcation outcomes (ci| j p j) and all class sample sizes (n j) are equal. If B̂C = 0 or

B̂C = sup{Y} , the lower bound is 0 or the upper bound is sup{BC} , respectively. For such a case,

the algorithm should be used to find the remaining upper or lower bound only.

4.2.3.1 General Case.

The following is an outline of steps to compute the proposed fiducial interval for k classes, an

observed y = B̂C , and classification system with either equal or unequal weights (explained with

options for equal [unequal] weights throughout).
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1. Create the joint binomial [multinomial] sample space, B [A] , for the k independent

binomial [multinomial] distributions from each class for equal [unequal] weights (this

sample space will have
∏k

j=1(n j + 1)

∏k
j=1

 n j + k − 1

n j


 elements).

2. Order the sample space, B [A] , by each element’s resulting y =
k∑

i=1,i, j

k∑
j=1

ci| j p j
xi| j
n j
.

3. Create the joint binomial [multinomial] parameter space, p = (p1c |1, . . . , pkc |k)

[p = (p1, . . . ,pk)] , to search for BCL and BCU . This parameter space is infinite,

therefore the search for the upper and lower bounds on BC will only consider all

p generated by a specified step or precision, δ . (It is recommended to start with a

larger δ , such as δ = 0.2 and consider smaller δ while narrowing in on the solution to

conserve code run time.)

4. For each element of the parameter space created in Step 3, apply Equation 4.16 [4.8]

and sum and store the resulting fX(x | p) from all elements of the B [A] sample space

whose corresponding y is less than or equal to B̂C .

5. Calculate BC =
∑k

j=1 p jc| j [BC =
k∑

i=1,i, j

k∑
j=1

ci| j p j pi| j] for each element in the joint

parameter space created in Step 3.

6. For each fixed BC resulting from the parameter space found in Step 5, determine

and store the maximum value of the sum in Step 4 (this gives F1
Y (y | BC)).

6a. For unequal weights only, create the step function in Equation 4.29. This is

done by determining the maximum value from Step 6 for all BC ∈ BC values greater

than or equal to each specific BC value. For each BC value this gives F3
Y (y | BC) .

7. The upper bound (BCU) is determined as the smallest BC whose maximum value

from Step 6 [6a] is ≤ α/2.

8. For the lower bound, repeat Steps 4-6, however, instead of summing the elements

of the binomial [multinomial] sample space where y ≤ B̂C , sum the elements for

which y > B̂C . Then, for each BC from the binomial [multinomial] parameter space,

determine the maximum value resulting from this sum which gives 1 − F2
Y (y | BC) .

8a. For unequal weights only, the maximum value of 1 − F2
Y (y | BC) for all
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BC ∈ BC less than or equal to each fixed BC value is found which gives F4
Y (y | BC)

(Equation 4.30).

9. The lower bound (BCL) is determined as the largest BC where 1 − F2
Y (y | BC)

[F4
Y (y | BC)] is ≤ α/2 .

10. Improve the precision of the solution by repeating Steps 3-9 iteratively, using

parameter spaces with smaller δ values. Before applying Steps 4-9 reduce the joint

binomial [multinomial] parameter space to be searched by only considering elements

resulting in BC values which are ±2δ from the previous BCL or BCU for finding the

lower or upper bound, respectively.

4.2.3.2 Special Case: Equal Sample Sizes and Weights.

When sample sizes (n j) and all weights (ci| j p j) on misclassification outcomes within the classes

are equal, the previous steps may be used, or more efficiently, the following may be used. For this

special case, the fiducial interval around BC reduces to a multiple of the Clopper-Pearson CI around

a binomial probability of success (where a success is defined as an incorrect classification). This

is demonstrated WLOG assuming an equal weight of one for all misclassification probabilities.

First, it is possible to determine the total misclassification probability from the entire classification

system as pmc =

∑k
j p jc | j

k = BC
k . Let the total number of misclassifications from the classification

system be the binomial random variable X = X1c |1 + · · · + Xkc |k . Then the binomial probability

for the total misclassification of the system is estimated by p̂mc =
X1c |1+···+Xkc |k

k×n = B̂C
k , which

can be written in terms of B̂C due to the equal sample size and weights in each class (n = n j).

Therefore, using the (1−α)100% Clopper-Pearson fiducial interval constructed around pmc such that

pmc ∈ [pmc,L, pmc,U] , the (1 − α)100% fiducial interval around BC is BC ∈ [k × pmc,L, k × pmc,U] =

[BCL, BCU] . From this result, the fiducial interval for BC is easily computed as a multiple of the

closed form solution to the Clopper-Pearson CI as

k ×
[
1 +

N − x + 1
xF2x,2(N−x+1),1−α/2

]−1

< BC < k ×
[
1 +

N − x
(x + 1)F2(x+1),2(N−x),α/2

]−1

(4.37)

where x is the total number of incorrect classifications observed for the entire sample from the

classification system, F represents the F distribution, and N = k × n [12].
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4.2.4 Equivalence for the Youden Index.

The fiducial interval around BC when all ci| j p j are equal, for i , j , can be used equivalently

for any k-class J. Because the outcomes from each class are modeled as binomial random

variables in this framework, let the correct classifications from each class (X j| j) be considered a

success instead of the misclassifications (X jc | j). Then, the correct classification probability space

(p = (p1|1, . . . , pk|k)) will be searched for the upper and lower bounds. Now let W = Ĵ . Then

W =

k∑
i=1
i= j

k∑
j=1

Xi| j

n j
(4.38)

where the maximization is excluded because it is assumed the classifier is applied at its optimal

settings. The (1 − α)100% upper and lower fiducial bounds for J from an observed statistic y are:

JL = sup

J ∈ J such that 1 − min
p:pT 1=J


∑
t≤w∗

∑
x∈B
w=t

fX(x | p)

 ≤ α

2

 (4.39)

JU = inf

J ∈ J such that max
p:pT 1=J


∑
t≤w

∑
x∈B
w=t

fX(x | p)

 ≤ α

2

 (4.40)

where J is the J sample space such that J = {J : J = pT 1,p = (p1|1, . . . , p|k), pi| j ∈ [0, 1]} ,

B is the joint binomial sample space which is the set of 1 × k sized vectors such that B = {x =

(x1|1, . . . , xk|k) : x j| j ∈ Z+, x j| j ≤ n j} ,W = {w : w =
k∑

i=1,i= j

k∑
j=1

xi| j
n j
, x ∈ B} and w∗ is the ordered

value of W ∈ W directly less than w. When w = 0 or w = k , the lower bound is JL = 0 and the

upper bound is JU = k , respectively.

4.3 Bootstrap Methods

Bootstrap methods presented in Section 3.4 may be similarly applied here. For comparison to

the newly developed nonparametric CI around BC, the BCa bootstrap CI will be used. The BCa

bootstrap CI is a practical choice because this CI method is appropriate when the distribution of the

parameter is skewed [11]. Recall that since BC is constructed by the minimization of multinomial

probabilities, it is expected that this distribution may be skewed. This was observed in the results

of the simulation in Section 3.5. The BCa CI also allows the skewness of the distribution to change

with the varying parameter, which also might be expected for BC based on the results of Section 3.5

71



(Figure 3.1) [11]. Finally, the BCa bootstrap CI is used for nonparametric CI around BC because

this CI method was shown to perform best for CI around BC in Chapter 3 (with BC estimated

parametrically) and for CI around J in [56] (with J estimated empirically).

4.4 Simulation Results

A simulation study was conducted to demonstrate the performance of the proposed fiducial

interval around BC. This method is ideal for small sample sizes, and therefore the simulations are

run with various equal and unequal small sample size scenarios for both the two- and three-class

BC. For clarity in this section, the two-class BC is denoted BC2 and the three-class BC denoted

BC3. These are defined as

BC2 = c2|1 p1 p2|1 + c1|2 p2 p1|2 (4.41)

and

BC3 =

3∑
i=1
i, j

3∑
j=1

ci| j p j pi| j (4.42)

Multiple values of BC2 and BC3 are considered in order to demonstrate performance of the fiducial

interval around BC under differing classification system performance. In addition to varying

classification performance scenarios, both equal and unequal weights are considered. The unequal

weights scenarios utilize the two unequal cost structures from the simulation in Chapter 3. Recall

that these cost structures are Cost1 =

[
0 1 2
1 0 1
2 1 0

]
and Cost2 =

[
0 2 5
1 0 3
1 3 0

]
where Cost =

[ c1|1 c1|2 c1|3
c2|1 c2|2 c2|3
c3|1 c3|2 c3|3

]
. All

prevalences are assumed equal (p j = 1
3 ).

Two distributional scenarios are considered. First, no distributional assumptions about the

classification system are made. Then, comparisons are made against other CI techniques when the

single feature used for classification is independently and normally distributed for each class. Each

distributional scenario is discussed separately. Absolute bias of B̂C is also presented. All simulation

scenarios used 3000 simulation runs in R and α = 0.05 [52].

4.4.1 Equal Costs.

A cost structure is assumed where ci| j p j = 1 , for i , j . Under this framework, BC2 ∈ [0, 2]

and BC3 ∈ [0, 3] , where BC2 = 1 and BC3 = 1.5 reflect chance classification. The values of

BC chosen to reflect a range of classification accuracy are BC2 = (0.6, 0.4, 0.2, 0.1) and BC3 =
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(0.9, 0.6, 0.3, 0.15), such that each BC3 value has the same average misclassification probability as

a corresponding BC2 value.

4.4.1.1 No Distributional Assumptions on the System.

Making no assumptions about the classification system’s structure, multinomial random

variables are randomly generated representing outcomes from a classification system’s resulting

contingency table (recall Tables 2.3 and 2.4). The misclassification probabilities are assumed to

be equally distributed between all classes for each BC2 or BC3 value. The fiducial interval is

constructed around BC separately for all 3000 simulation runs and the coverage probability and

average length of the intervals calculated. Absolute bias of the estimated BC is also calculated.

The results are presented in Table 4.4. For all sample size and BC scenarios, the intervals

perform well with coverage probabilities of at least 95%. Also, the average length of the interval

decreases as the total sample size increases and as the classification performance improves (smaller

BC). The absolute bias in the empirically estimated BC is higher for larger BC values and decreases

as n j increases, mimicking the trend of interval length. Absolute bias is higher for BC3 (absolute

bias ∈ [0.056, 0.292]) than for BC2 (absolute bias ∈ [0.044, 0.225]) for equivalent n j .

4.4.1.2 Normally Distributed Feature.

To compare the performance of the proposed fiducial interval to other available CI methods for

BC, a classification system with a single feature that is independently and normally distributed for

each class and a single threshold between each class (two thresholds for BC3) is assumed. For all

scenarios, the variance for each class is assumed equal to one and the means are varied to achieve

the desired BC2 or BC3 value. These normal distribution parameters are listed in Table 4.5. The

sample sizes considered are held consistent with those in Section 4.4.1.1.

For both the two- and three-class scenarios, three methods in addition to the fiducial interval

are compared. The first method is a nonparametric BCa bootstrap CI. In [56], the BCa bootstrap CI

is shown to have good coverage around J2 for n j ≥ 50 when J2 is estimated empirically. However,

in [36], the BCa bootstrap is shown to perform well for slightly smaller sample sizes when J3 is

estimated parametrically (defining J as a function of the normal distribution parameters from the

features). Recall, when all ci| j p j are equal, for i , j , J and BC may be used equivalently where
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Table 4.4: Simulation coverage probability and length for 95% fiducial intervals around BC for two

and three classes when all ci| j p j are equal, for i , j , making no distributional assumptions on the

classification system

BC2 = 0.6 0.4 0.2 0.1

# of Classes n1 n2 Cov Len Cov Len Cov Len Cov Len

k = 2 5 5 99.03 1.12 99.57 1.01 99.00 0.85 98.70 0.74
6 9 96.00 0.92 97.47 0.82 98.93 0.68 98.27 0.58
10 10 97.53 0.83 98.10 0.73 99.00 0.58 98.50 0.48
12 18 95.60 0.67 96.00 0.60 98.77 0.47 99.33 0.38
20 20 96.37 0.59 97.27 0.52 97.03 0.41 98.70 0.31
22 28 95.47 0.51 95.90 0.46 96.33 0.35 98.23 0.27
30 30 96.70 0.48 96.50 0.43 97.27 0.33 99.10 0.25

BC3 = 0.9 0.6 0.3 0.15

# of Classes n1 n2 n3 Cov Len Cov Len Cov Len Cov Len

k = 3 5 5 5 97.80 1.41 98.00 1.26 98.73 1.02 99.40 0.85
4 6 10 96.53 1.25 98.27 1.12 98.27 0.91 98.97 0.78
10 10 10 96.97 1.02 97.93 0.91 99.17 0.71 98.53 0.56
8 12 20 95.67 0.91 96.77 0.82 98.63 0.64 99.00 0.52
20 20 20 96.60 0.72 96.27 0.64 97.03 0.49 98.97 0.37
24 16 30 95.17 0.67 95.37 0.59 98.03 0.47 99.23 0.36
30 30 30 96.17 0.59 96.47 0.52 96.13 0.40 97.53 0.30

Cov - coverage probability; Len - length

BC2 = 1 − J2 and BC3 = 3 − J3 (where J2 = p1|1 + p2|2 − 1 and J3 = p1|1 + p2|2 + p3|3). Therefore,

two BCa bootstrap CIs are constructed around both BC2 and BC3, one utilizing an empirical and

the other a parametric estimation of BC as described in [56] and [36] (denoted BCaE and BCaP,

respectively). For both BCa CIs, 999 nonparametric bootstrap samples are used. In addition, the

delta method CI (see Section 3.2) and the GCI (see Section 3.3) are also used for comparison to

the fiducial interval. For the implementation of these CIs, the classifier is applied to the random

samples from the normal distributions to construct the resulting contingency table (in the spirit of

Table 2.4), and then the appropriate CI method is applied.

One additional method is also considered for comparisons of CIs around BC2. Because this

method was developed for the two-class framework only, it is not used in the simulation for BC3.
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Table 4.5: Normal distribution parameters used in fiducial interval simulation with each σ j = 1

# of Classes BC µ1 µ2 µ3

k = 2 0.6 0 1.049 -
0.4 0 1.683 -
0.2 0 2.563 -
0.1 0 3.290 -

k = 3 0.9 -1.0 0 2.148
0.6 -1.5 0 2.902
0.3 -2.5 0 3.405

0.15 -3.6 0 3.523

This final method is a nonparametric method which assumes there is a single threshold between

the two classes, but makes no assumptions about the distribution of the feature. It is based on the

Agrestti Coull CI for a binomial proportion and utilizes a bootstrap to determine the CI bounds

(denoted NP) [79]. This method uses an estimation of J (easily modified for BC) given in Equation

2.33. Once again, since all weights are fixed to be equal, this CI method may be used equivalently for

BC2. The coverage and length of all CIs around BC2 and BC3 is determined by the 3000 simulation

runs for the normally distributed feature. All simulations are run in R and the boot package is used

for all bootstrapped CIs [10, 15, 52].

The results are presented in Table 4.6 for two classes and Table 4.7 for three classes (due to

the poor performance of the NP CI, these results are in the Appendix, Section B.2). The proposed

fiducial method meets or exceeds the desired coverage probability of 95% for all sample size and

BC values considered. Also, similar to the simulation scenario which made no assumptions about

the underlying distributions, as the total sample size increases and BC value decreases, the length

of the fiducial interval decreases. Since lower BC values indicate a more accurate classification

system, the proposed CI will perform best (when also considering length) for accurate systems.
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Table 4.6: Simulation coverage probability and length for multiple methods’ 95% CI around BC2

for two classes with a normally distributed feature when all ci| j p j are equal, for i , j .

Fiducial Delta BCaP BCaE GCI

n1 n2 BC2 Cov Len Cov Len Cov Len Cov Len Cov Len

5 5 0.6 100.0 1.10 86.07 0.80 86.10 0.67 71.90 1.32 96.93 0.77
0.4 99.87 0.98 85.17 0.72 83.67 0.62 80.97 1.42 97.53 0.75
0.2 98.90 0.80 82.00 0.53 78.93 0.43 64.30 1.16 98.37 0.62
0.1 98.80 0.70 78.37 0.37 75.77 0.28 21.80 0.73 98.60 0.50

6 9 0.6 96.57 0.91 90.03 0.71 91.07 0.63 88.30 0.91 96.53 0.67
0.4 98.80 0.81 88.80 0.63 89.23 0.59 88.07 0.93 97.07 0.64
0.2 99.27 0.65 85.70 0.46 85.47 0.42 77.40 0.73 97.80 0.51
0.1 99.00 0.56 82.47 0.31 83.33 0.28 41.17 0.46 98.00 0.39

10 10 0.6 98.60 0.82 91.73 0.61 93.33 0.57 84.26 0.76 96.06 0.59
0.4 97.03 0.72 90.33 0.54 92.23 0.53 90.20 0.76 96.10 0.55
0.2 98.97 0.57 87.50 0.39 89.60 0.38 88.07 0.57 96.60 0.42
0.1 98.80 0.46 85.97 0.26 87.97 0.26 37.20 0.34 96.63 0.31

12 18 0.6 96.83 0.67 92.63 0.52 93.63 0.50 92.33 0.67 95.40 0.51
0.4 96.10 0.59 91.57 0.46 93.17 0.46 94.07 0.64 95.37 0.46
0.2 99.10 0.46 89.40 0.33 91.93 0.33 91.87 0.52 96.00 0.35
0.1 99.60 0.36 87.37 0.22 90.97 0.23 84.03 0.34 96.13 0.25

20 20 0.6 95.63 0.59 92.13 0.45 93.47 0.44 89.63 0.59 94.33 0.44
0.4 97.47 0.52 91.67 0.39 93.27 0.39 94.33 0.55 94.57 0.39
0.2 96.17 0.40 90.37 0.29 92.33 0.29 94.07 0.44 94.63 0.29
0.1 99.00 0.30 88.97 0.19 91.73 0.20 78.10 0.31 94.76 0.21

22 28 0.6 95.87 0.51 92.90 0.40 93.80 0.40 93.27 0.53 94.80 0.40
0.4 96.00 0.45 92.30 0.36 93.60 0.36 95.20 0.48 95.07 0.36
0.2 95.60 0.35 91.20 0.26 93.23 0.26 94.43 0.39 95.43 0.26
0.1 98.57 0.26 89.23 0.17 92.77 0.18 91.37 0.29 95.63 0.18

30 30 0.6 97.13 0.48 94.37 0.37 94.93 0.37 90.57 0.49 95.70 0.37
0.4 97.00 0.43 93.93 0.32 94.50 0.33 94.83 0.44 95.80 0.32
0.2 97.37 0.33 93.33 0.24 93.47 0.24 95.93 0.36 95.47 0.24
0.1 99.27 0.24 91.70 0.16 93.12 0.16 84.87 0.27 95.63 0.17

Cov - coverage probability; Len - length; BCaP - bias corrected and accelerated/parametric estimate
BCaE - bias corrected and accelerated/empirical estimate; GCI - generalized confidence interval
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Table 4.7: Simulation coverage probability and length for multiple methods’ 95% CI around BC3

for three classes with a normally distributed feature when all ci| j p j are equal, for i , j .

Fiducial Delta BCaP BCaE GCI

n1 n2 n3 BC3 Cov Len Cov Len Cov Len Cov Len Cov Len

5 5 5 2.1 98.50 1.37 89.97 0.91 80.80 0.69 74.03 1.00 97.53 0.89
2.4 99.43 1.21 88.33 0.85 82.23 0.66 84.53 0.93 96.80 0.87
2.7 99.27 0.94 86.37 0.67 79.17 0.49 62.80 0.66 95.00 0.80

2.85 99.63 0.78 84.63 0.49 77.03 0.34 29.7 0.35 93.77 0.69

4 6 10 2.1 96.80 1.21 87.33 0.87 78.73 0.66 82.47 1.07 97.40 0.85
2.4 99.30 1.07 87.33 0.82 80.87 0.63 84.97 0.99 97.70 0.84
2.7 98.77 0.86 84.70 0.64 78.67 0.47 74.50 0.70 97.30 0.75

2.85 99.40 0.74 84.23 0.44 79.67 0.33 53.27 0.40 95.57 0.63

10 10 10 2.1 98.60 1.01 92.47 0.68 89.73 0.60 89.87 0.92 96.33 0.66
2.4 98.23 0.89 92.33 0.63 91.00 0.57 92.60 0.86 96.30 0.63
2.7 99.40 0.68 91.33 0.49 98.97 0.44 90.97 0.68 95.97 0.53

2.85 98.70 0.52 89.77 0.35 89.47 0.32 74.53 0.43 95.33 0.42

8 12 20 2.1 96.63 0.90 91.27 0.64 87.97 0.57 89.20 0.88 96.13 0.62
2.4 95.20 0.80 91.23 0.61 89.57 0.55 91.80 0.84 96.47 0.61
2.7 98.83 0.63 90.00 0.47 89.03 0.42 90.73 0.67 96.60 0.51

2.85 99.47 0.50 89.50 0.32 88.73 0.29 86.67 0.43 95.03 0.38

20 20 20 2.1 97.80 0.72 93.43 0.49 92.20 0.46 92.33 0.69 95.57 0.48
2.4 97.13 0.63 92.80 0.45 92.93 0.43 93.93 0.64 95.57 0.45
2.7 96.80 0.48 92.03 0.35 92.03 0.34 94.50 0.52 95.03 0.37

2.85 99.20 0.36 91.10 0.24 91.50 0.24 92.73 0.38 94.03 0.27

24 16 30 2.1 95.53 0.66 92.83 0.47 91.17 0.44 92.77 0.68 95.93 0.45
2.4 95.63 0.59 92.87 0.45 91.87 0.43 94.93 0.63 95.10 0.45
2.7 97.27 0.46 92.33 0.35 91.10 0.33 94.43 0.51 94.60 0.37

2.85 99.33 0.35 90.93 0.25 91.13 0.23 91.63 0.38 93.57 0.28

30 30 30 2.1 97.37 0.59 94.33 0.40 92.67 0.39 94.93 0.57 94.57 0.40
2.4 97.43 0.52 93.87 0.37 93.47 0.36 94.7 0.52 94.67 0.37
2.7 97.00 0.40 93.73 0.29 93.13 0.28 95.00 0.42 94.53 0.30

2.85 97.77 0.29 93.33 0.20 93.27 0.20 90.97 0.32 94.33 0.22
Cov - coverage probability; Len - length; BCaP - bias corrected and accelerated/parametric estimate
BCaE - bias corrected and accelerated/empirical estimate; GCI - generalized confidence interval
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The only other CI that approaches the desired coverage probability is the GCI. The GCI has

lengths that are on average 25% shorter than the fiducial intervals. However, the GCI is only

appropriate for a classification system with a single feature that is independently and normally

distributed for each class. The GCI always outperforms the delta method CI in coverage, which is

also constructed on the assumption of a normally distributed feature (this was already observed in

Section 3.5 for the small sample size scenario).

The NP CI performs poorly with respect to coverage for highly accurate classifiers (BC = 0.1)

and for all BC values for n j ≤ 20 (see Appendix B.2). Therefore, this CI is not appropriate

for a nonparametric small sample CI around BC. Both bootstrap CIs (with BC estimated either

parametrically or empirically) perform poorly for small sample size scenarios (with the BCaP CI

outperforming the BCaE CI). In general, the bootstrap BCa CI with a parametric estimate of BC

performs very similar to the delta method CI in both length and coverage, as is also seen in Section

3.5. The BCaE CI performs fairly well in coverage for n j ≥ 20 , although the coverage drops for

BC = 0.1. Also, as the coverage of the BCaE CI gets close to the desired level (≈ 90 − 95%),

this CI’s length becomes very similar to, and usually slightly worse than, the length of the fiducial

interval. This suggests that for a nonparametric method that meets the desired coverage, it may not

be possible to achieve shorter lengths than that of the fiducial interval.

The parametric estimate of BC (used for the delta, generalized, and BCaP CIs) has the lowest

absolute bias (absolute bias ∈ [0.001, 0.209]), which is expected because this estimate is based on

the assumptions used for the simulation. The empirically estimated BC (used for the BCaE and

fiducial intervals) has larger bias (absolute bias ∈ [0.007, 0.278]) than the parametric estimates but

similar bias as seen in the simulation that used multinomial random variables. Finally, the bias

for the estimate of BC used for the NP CI increases significantly as BC2 decreases (absolute bias

∈ [0.066, 0.356]). This trend in bias was also noted in [79] for J. This increase in bias for decreased

BC2 may contribute to the decreased coverage for this method at lower BC values.

4.4.2 Unequal Costs.

To ensure performance of the fiducial CI is not degraded when the costs of misclassification are

not equal, two additional cost scenarios (the same cost structures considered for the parametric CIs
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in Section 3.5) are considered for the three-class BC. In Section 3.5, the different cost structures do

not have an impact on the CI performance for a normally distributed feature. For this reason the cost

structure performance is demonstrated with the multinomial distribution only, as the performance

with a normally distributed feature is not expected to differ from what is presented in Tables 4.6 and

4.7.

Additionally, only sample sizes up to n j = 20 are considered as a result of intensive com-

putational time when using the multinomial distributions. The same average total misclassification

probabilities considered for the equal cost scenarios are used for this simulation, with the error prob-

abilities being evenly distributed throughout the classes. This results in different BC3 values, where

BC3,Cost1 = (0.4, 0.27, 0.13, 0.07) and BC3,Cost2 = (0.75, 0.5, 0.25, 0.125). The coverage probabil-

ity and length of the CIs are presented in Table 4.8. As expected, the CI is achieving a coverage

probability of at least 1 − α. Notably, the CI for the unequal cost scenarios are more conservative

with respect to coverage than the equal cost scenarios due to the step function required for find-

ing the bounds. Finally, bias of the estimated BC is similar to the previous sections (absolute bias

∈ [0.026, 0.137] for Cost1 and absolute bias ∈ [0.053, 0.274] for Cost2).

4.5 Comparisons to Multinomial Methods

One simple solution for a CI around BC is the construction of simultaneous CIs around the

multinomial probabilities resulting from the classification system, and then summing these bounds

to calculate upper and lower bounds around BC:

BCL =

k∑
i=1
i, j

k∑
j=1

pi| j,L (4.43)

BCU =

k∑
i=1
i, j

k∑
j=1

pi| j,U (4.44)

where [pi| j,L, pi| j,U] is the (1− α)100% CI around pi| j found using a simultaneous CI method for the

jth class’ multinomial probabilities. With k classes, k sets of simultaneous CIs will be needed which

may require an adjustment for multiple comparisons to construct the (1 − α)100% CI around BC.
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Table 4.8: Simulation coverage probability for 95% fiducial intervals around BC for three classes

and two different cost structures making no assumptions on the classification system.

BC3 = 0.4 0.27 0.13 0.07

Cost1 n1 n2 n3 Cov Len Cov Len Cov Len Cov Len

5 5 5 99.27 0.76 99.63 0.67 98.93 0.55 98.43 0.48
4 6 10 98.93 0.70 99.40 0.61 99.63 0.50 99.50 0.42
10 10 10 99.13 0.55 98.60 0.48 99.17 0.38 98.67 0.30
8 12 20 98.50 0.52 98.93 0.46 99.13 0.37 99.53 0.30
20 20 20 98.90 0.40 98.63 0.35 99.03 0.27 99.13 0.20

BC3 = 0.75 0.5 0.25 0.125

Cost2 n1 n2 n3 Cov Len Cov Len Cov Len Cov Len

5 5 5 99.13 1.42 99.13 1.26 98.30 1.06 99.47 0.96
4 6 10 98.53 1.12 98.20 0.98 97.90 0.80 98.50 0.67
10 10 10 98.30 1.06 98.70 0.92 98.83 0.72 98.67 0.60
8 12 20 97.87 0.82 97.87 0.71 98.13 0.55 98.27 0.43
20 20 20 97.87 0.77 98.07 0.67 98.87 0.51 99.20 0.39

Cov - Coverage probability; Len - Length

The simultaneous CI methods for multinomial probabilities listed in Section 2.7.2.1 that may

be used for producing a CI around BC are considered in this section. In [71] the performance of

these methods is evaluated with respect to coverage probability. The Gold (1963) and Goodman

(1965) methods have a minimum possible coverage probability of zero, which is not desirable [71].

The Queensberry and Hurst, Fitzpatrick and Scott, and Sison and Glaz methods all have minimum

coverage probabilities greater than zero, although notably not greater than 1 − α [71]. The three

methods whose minimum coverage probability is greater than zero are considered for constructing

a CI around BC.

The final method considered (although it is not a simultaneous CI for multinomial proportions)

is the Clopper-Pearson CI for a binomial proportion (presented in Section 2.7.1.1). Under the

assumption that all ci| j p j are equal, for i , j , the total misclassification probability from each class

may be modeled as a binomial proportion and therefore the Clopper-Pearson CI can be utilized.

The Clopper-Pearson CI for binomial proportions has a minimum coverage probability of at least

1 − α [3].
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4.5.1 Simulation Results.

A simulation was conducted to compare the performance of the Clopper-Pearson, Fitzpatrck

and Scott, Queensberry and Hurst, Sison and Glaz, Wald, and Log Wald methods when used to

construct CIs around BC (Wald and Log Wald intervals are developed for BC in the Appendix,

Section A.4). A three-class scenario with equal misclassification weights is assumed (ci| j p j = 1 ,

i , j), and n j = 5, 10, and 30 is considered. The coverage probability and length of the intervals

over all values of BC (in increments of 0.01, allowing misclassification probabilities to be randomly

assigned within all classes for each sample and fixed BC value) are determined using 10,000

simulation runs. Although some of the methods considered in this section require the construction

of k sets of simultaneous CIs, an adjustment for multiple comparisons (such as the Bonferroni

adjustment to α) is not made since these methods’ resulting CIs around BC without an adjustment

all have coverage above 1 − α. A Bonferroni adjustment would only increase the coverage and

length of the interval, which is not desired for comparison. The results are presented in Figure 4.36.

The simultaneous CI methods do not perform well with respect to CI length (although coverage

is met) and generally are so wide that the CI would be useless. Also, as expected due to the poor

performance of the Wald CI on binomial proportions, the Wald and Log Wald methods do not meet

the desired coverage, although they have shorter lengths. The performance of the fiducial interval

is presented in Figure 4.3 for k = 3 and n j = 5,10, and 30 with the red line. Notably, the fiducial

method outperforms the simultaneous CI methods as it exceeds the desired coverage with much

shorter lengths.

6Discontinuities in the plots at BC = 1.0 and BC = 2.0 occur due to a change in how the probabilities were randomly
assigned, which was necessary to ensure the BC values reached the desired levels.
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Figure 4.3: Coverage probability (left) and length (right) of CI methods for 95% CIs using Wald

(blue), Log Wald (light blue), Sison and Glaz (green), Fitzpatrick and Scott (purple), Queensberry

and Hurst (pink), Clopper and Pearson (dark green), and the fiducial interval developed in Section

4.2 (red). 82



4.6 Summary

Although Fisher’s fiducial argument was lively debated, and deemed ”Fisher’s biggest

blunder” by Efron, the objections to the theory were philosophical and not based on the method’s

feasibility [18, 31, 77]. In fact, in this chapter, the fiducial interval was shown to be a very useful and

well performing tool for a CI around BC. The fiducial interval proposed in this chapter consistently

meets the desired coverage probability for various classification scenarios. Although the CI has

longer length than other intervals, when a CI under similar frameworks (empirically estimated

BCa bootstrap CI) comes close to the desired coverage, the length of the other CI is similar and

sometimes worse than that of the fiducial interval. The fiducial interval was shown to outperform

the Wald, log Wald, and all simultaneous CI methods for multinomial probabilities considered with

respect to coverage probability and length.

The fiducial interval performs well under any distributional scenario, as demonstrated in the

simulation section using classification systems with either no underlying distributions or those with

a single normally distributed feature. When the feature is normally distributed, the GCI presented

in Section 3.3 outperforms all other methods considered in length, when the coverage was met.

Coverage was met with both the GCI and fiducial methods, although the estimates of coverage

were slightly lower with the GCI. The simulation suggests that the GCI performance may drop

as class size and classification accuracy increases, in the three-class scenario. However, under the

scenarios considered in the simulation in Section 4.4.1.2 for a normally distributed feature, the GCI

is recommended. The utility of this CI is limited, however, as it is only appropriate for classification

systems known to have thresholds between a feature’s normal distributions for each class.

The fiducial interval has been developed to assure coverage is met. As such, the interval

exceeds the coverage, resulting in interval lengths which may be seen as impractical. This is

especially true for very small samples in the simulation. However, the fiducial interval is the only

method which will guarantee coverage for any nonparametric scenario and sample size, and still

may provide useful information. For instance, in the simulation where each class only has a sample

of size five, coverage is about 99% for all BC values considered. For the high BC values, the lengths

cover more than half of the possible range of BC. Yet when the BC value is low, the lengths of the
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fiducial intervals are shorter to the extent that a classification system performing better than chance

would still be determined. Therefore, even in small sample scenarios accurate systems may be

detected, suggesting usefulness in this method for, say, pilot studies of potential classifiers.

The fiducial method requires searching the parameter space incremented by a predetermined

tolerance. Given the step functions required for finding the bounds for BC when costs on

misclassifications are unequal, this tolerance should be chosen carefully. If the space is searched

too coarsely, the upper or lower bound may be found to be too small or large, respectively. This

is demonstrated for a three-class example where the second cost structure (Cost2) is used. The top

plot in Figure 4.4 is the minimum coverage at all BC values when the solution to the bounds was

found by searching the parameter space, incremented by 0.05. The bottom plot in Figure 4.4 is the

minimum coverage at all BC values when the parameter space searched was incremented by 0.01. It

is clear that for a specific scenario, the minimum coverage achieved was below the desired level of

95% when the space was searched too coarsely. This minimum coverage is improved however, for

the more finely searched interval. Therefore, although the developed fiducial interval theoretically

guarantees a coverage of (1 − α)100%, the increment used for searching the parameter space must

be chosen carefully for the practical implementation of the interval when costs are unequal.
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Figure 4.4: Minimum coverage of fiducial intervals when searching with coarser and finer

increments in probability space, δ = 0.05 (Top) and δ = 0.01 (Bottom)
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This chapter provides a nonparametric CI for any k-class BC which does not rely on

information about the classification system used to construct the interval. This CI may be applied

once the optimal thresholds have been selected, has the advantage of working for any classifier

and regardless of scenario, and achieves the desired coverage probability. Therefore, in situations

with small sample sizes or where the underlying distributions of the feature for each class are not

normal or unknown, this fiducial interval provides a very useful and flexible tool for quantifying the

uncertainty in B̂C. Finally, although this method is developed for applications with BC, it may be

used for constructing a CI around any linear combination of multinomial or binomial probabilities.
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V. Parametric Hypothesis Tests

5.1 Introduction

The methods proposed in this chapter assume a classification system with a single feature that

is independently and normally distributed for each class and a threshold between ordered classes to

distinguish any k number of classes. Under this framework, recall that BC can be written with the

normal CDF, where the minimization is left off because this is achieved by using the k − 1 optimal

thresholds (θ∗m , m = 1, . . . , k − 1).

BC =

k∑
j=2

c1| j p jΦ

(
θ∗1 − µ j

σ j

)
+

k−1∑
i=2
i, j

k∑
j=1

ci| j p j

[
Φ

(
θ∗m=i − µ j

σ j

)
− Φ

(
θ∗m=i−1 − µ j

σ j

)]
+

k−1∑
j=1

ck| j p jΦ

(
µ j − θ

∗
k−1

σ j

)
(3.9)

The development of two different types of hypothesis tests is considered. First, for a single

classification system, it may be of interest to test a one sided hypothesis on BC in order to determine

if the system performs at least as well as some pre-specified classification accuracy level (measured

by BC). For instance, one may be interested in determining if a system performs better than chance.

Lower values of BC correspond to better classification accuracy resulting in hypotheses of the form

H0 : BC ≥ BC0 vs. H1 : BC < BC0 (5.1)

Secondly, it may also be of interest to compare the resulting BC values from two competing

classification systems at their optimal point, in order to determine if one has superior classification

performance. This hypothesis test may be of greater interest to decision makers because it provides

information useful for choosing a classification system without having to specify a BC threshold

(BC0). It is assumed both classification systems are independent and have the same number of

classes, and the feature used for each classification system is independently and normally distributed

for each class. The two classification systems being compared will be denoted classification system

A and classification system B. Define the difference between the two BC values from these systems

as

η = BCA − BCB (5.2)
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The hypothesis to compare their performance would be of the form

H0 : η ≤ η0 vs. H1 : η > η0 (5.3)

This hypothesis may be written for the specific case

H0 : BCA ≤ BCB vs. H1 : BCA > BCB (5.4)

which is equivalent to testing at η0 = 0 (no difference between performance). Higher values of

BC indicate a classification system with poor performance and therefore the alternate hypothesis

reflects the case when classification system B performs better than classification system A.

In Section 5.2, the delta method is used for developing both types of hypothesis tests assuming

large sample sizes. In Section 5.3, both hypothesis tests are developed using a generalized

hypothesis method for any sample size. A simulation is also considered to demonstrate the

performance of the proposed hypothesis test methods (with size and power) and these results are

presented in Section 5.4. Finally, a summary of the findings is presented in Section 5.5.

5.2 Delta Method Hypothesis Tests

5.2.1 One-sided Hypothesis Test on a Single Bayes Cost Value.

Recall from Section 3.2, for a normally distributed feature, as n→ ∞ , B̂C ∼ N(BC,Var(B̂C))

and the variance of B̂C is estimated via the delta method with

Var
(
B̂C

)
≈

k∑
j=1

(∂BC
∂µ j

)2

Var(µ̂ j) +

(
∂BC
∂σ j

)2

Var(σ̂ j)

 (3.10)

The partial derivatives for the three- and four-class BC are presented in Section 3.2.1 and Appendix

A.3, respectively. However, for any number of classes, the partial derivatives are easily estimated

numerically with the two point central difference method (Section 3.2.3). After estimating the partial

derivatives and the variance of B̂C, the one sided hypothesis

H0 : BC ≥ BC0 vs. H1 : BC < BC0 (5.1)

is tested by calculating a p-value from the observed sample. The p-value is developed using the

following theorem.
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Theorem 7 (Valid P-value).

Let W(X) be a test statistic such that large values of W give evidence that H1 is
true. For each sample point x, define

p(x) = sup
θ∈Θ0

Pθ(W(X) ≥ W(x))

Then, p(X) is a valid p-value. [12, p. 397]

Let W(X) =
B̂C−BC0√

Var(B̂C)
. For BC = BC0 , W(X) is distributed standard normal as n → ∞ .

However, large values of W(X) give evidence that H1 is false. Therefore, to test the one-sided

hypothesis in Equation 5.1 with this test statistic, the p-value is determined as

p(x) = sup
θ∈Θ0

Pθ(W(X) ≤ W(x)) (5.5)

For any arbitrary BC′ ≥ BC0 , B̂C − BC0 ≥ B̂C − BC′ and

P

Z ≤ B̂C − BC0√
Var(B̂C)

 ≥ P

Z ≤ B̂C − BC′√
Var(B̂C)

 (5.6)

Therefore, the p-value for this hypothesis test is given by

p(x) = sup
θ∈Θ0

Pθ(W(X) ≤ W(x))

= P

Z ≤ B̂C − BC0√
Var(B̂C)

 (5.7)

At the α significance level, H0 is rejected for W(x) ≤ Zα or p(x) < α .

5.2.2 One-sided Hypothesis Test on the Difference of Two Bayes Cost Values.

For testing the hypothesis

H0 : η ≤ η0 vs. H1 : η > η0 (5.3)
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the parameter of interest, η , is a function of the normal distribution parameters, µ j,A , σ j,A , µ j,B ,

and σ j,B , j = 1, . . . , k .

η =BCA − BCB

=

k∑
j=2

c1| j p jΦ

(
θ∗1,A − µ j,A

σ j,A

)
+

k−1∑
i=2
i, j

k∑
j=1

ci| j p j

[
Φ

(
θ∗m=i,A − µ j,A

σ j,A

)
− Φ

(
θ∗m=i−1,A − µ j,A

σ j,A

)]

+

k−1∑
j=1

ck| j p jΦ

(
µ j,A − θ

∗
k−1,A

σ j,A

)
−

k∑
j=2

c1| j p jΦ

(
θ∗1,B − µ j,B

σ j,B

)

−

k−1∑
i=2
i, j

k∑
j=1

ci| j p j

[
Φ

(
θ∗m=i,B − µ j,B

σ j,B

)
− Φ

(
θ∗m=i−1,B − µ j,B

σ j,B

)]

−

k−1∑
j=1

ck| j p jΦ

(
µ j,B − θ

∗
k−1,B

σ j,B

)
(5.8)

Therefore, from the multivariate delta method (Theorem 4), η̂ = g(̂µ, σ̂) is Asymptotic-

Normal[η,Var(̂η)] and Var(̂η) is estimated by

Var
(̂
η
)
≈

k∑
j=1

( ∂η

∂µ j,A

)2

Var(µ̂ j,A) +

(
∂η

∂σ j,A

)2

Var(σ̂ j,A)

+

(
∂η

∂µ j,B

)2

Var(µ̂ j,B) +

(
∂η

∂σ j,B

)2

Var(σ̂ j,B)

 (5.9)

Covariance terms are excluded due to the assumption of independence between the normal

distributions for each class and the classification systems being compared. Given that η =

BCA − BCB and each BC value only depends on the parameters associated with the classification

system from which it were derived, (
∂η

∂γ j,A

)2

=

(
∂BCA

∂γ j,A

)2

(5.10)

and (
∂η

∂γ j,B

)2

=

(
∂BCB

∂γ j,B

)2

(5.11)
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(where γ j = µ j or σ j and j = 1, . . . , k). Then Equation 5.9 may be rewritten:

Var
(̂
η
)
≈

k∑
j=1

(∂BCA

∂µ j,A

)2

Var(µ̂ j,A) +

(
∂BCA

∂σ j,A

)2

Var(σ̂ j,A)

+

(
∂BCB

∂µ j,B

)2

Var(µ̂ j,B) +

(
∂BCB

∂σ j,B

)2

Var(σ̂ j,B)

 (5.12)

The partial derivatives required for estimating the variance of η in Equation 5.12 are found using the

partial derivatives of BC. Recall these equations are presented in Section 3.2.1 for three classes, in

Appendix A.3 for four classes, or generally for any k classes with the two-point central difference

method presented in Section 3.2.3.

Similar to the previous section, the test statistic is W(X) =
η̂−η0√
Var(̂η)

, where large values of

W(X) give evidence that H1 is true. For η = η0 , W(X) is distributed standard normal as n → ∞ ,

and the p-value for this hypothesis test is

p(x) = P

Z ≥ η̂ − η0√
Var(̂η)

 (5.13)

At the α significance level, H0 is rejected for W(x) ≥ Z1−α or p(x) < α .

5.3 Generalized Hypothesis Tests

Let ζ = (θ, δ) where θ is the parameter of interest and δ is a vector of nuisance parameters.

Definition 4 (Generalized Test Variable).

A random variable of the form T = T (X; x, ζ) is said to be a generalized test variable
if it has the following three properties:
Property 1: tobs = t(x; x, ζ) does not depend on unknown parameters.
Property 2: When θ is specified, T has a probability distribution that is free of nuisance
parameters.
Property 3: For fixed x and δ , Pr(T ≤ t; θ) is a monotonic function of θ for any given
t. [73, p. 115]

If T is a generalized test variable which is stochastically decreasing in θ , the generalized

p-value for testing H0 : θ ≤ θ0 vs H1 : θ > θ0 can be found as [73, p. 119]

p(x) = Pr(T ≤ tobs | θ = θ0) (5.14)
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5.3.1 One-sided Hypothesis Test on a Single Bayes Cost Value.

For testing the hypotheses of the form

H0 : BC ≥ BC0 vs. H1 : BC < BC0 (5.1)

the parameter of interest is the k-class BC defined in Equation 3.9, which is a function of the

nuisance parameters, µ j and σ j , j = 1, . . . , k . Define T = T (X; x, ζ) as

T = RBC − BC (5.15)

where RBC was defined previously as

RBC =

k∑
j=2

c1| j p jΦ

(Rθ∗1 − Rµ j

Rσ j

)

+

k−1∑
i=2
i, j

k∑
j=1

ci| j p j

[
Φ

(Rθ∗m=i
− Rµ j

Rσ j

)
− Φ

(Rθ∗m=i−1
− Rµ j

Rσ j

)]
+

k−1∑
j=1

ck| j p jΦ

(Rµ j − Rθ∗k−1

Rσ j

)
(3.25)

It was shown in Section 3.3.3, that RBC is free of unknown parameters. Also recall that the GPQs

for the optimal thresholds (Rθ∗m) are found numerically (when all ci| j p j are not equal, for i , j). As

seen in Section 3.3.1, for each class (indexed on j = 1, . . . , k)

Rµ j = x j − t j
s j
√n j

(3.16)

and

Rσ j =

√
(n j − 1)s2

j

V j
(3.17)

where

t j =
X j − µ j

S j/
√n j

(3.18)

and

V j =
(n j − 1)S 2

j

σ2
j

(3.19)

where t j ∼ t(n j−1) , a t-distribution random variable with n j − 1 degrees of freedom, and V j ∼ χ
2
n j−1 ,

a chi-square random variable with n j − 1 degrees of freedom [12, p. 218, 223]. The observed

value of T , where tobs = T (x,S) , is evaluated by using x j and S j in Equations 3.18 and 3.19 and

92



then substituting Equations 3.18 and 3.19 into Equations 3.16 and 3.17, respectively. This results

in Rµ j(x,S) = µ j , Rσ j(x,S) = σ j , and the numerically estimated Rθ∗m(x,S) = θ∗m . Substituting

Rµ j(x,S) = µ j , Rσ j(x,S) = σ j , and Rθ∗m(x,S) = θ∗m into Equation 3.25 and Equation 5.15 results in

tobs =

k∑
j=2

c1| j p jΦ

(
θ∗1 − µ j

σ j

)

+

k−1∑
i=2
i, j

k∑
j=1

ci| j p j

[
Φ

(
θ∗m=i − µ j

σ j

)
− Φ

(
θ∗m=i−1 − µ j

σ j

)]
+

k−1∑
j=1

ck| j p jΦ

(
µ j − θ

∗
k−1

σ j

)
− BC

=BC − BC

=0 (5.16)

Therefore, it is clear that Property 1 from Definition 4 is met since tobs does not depend on unknown

parameters. Property 2 of Definition 4 is met, because RBC is free of unknown parameters which

implies that when BC is specified, T does not depend on any nuisance parameters. Finally, for

Property 3, let the distribution of RBC be denoted FRBC (r) , which is free of unknown parameters.

Since T = RBC − BC , the CDF of T may be written as

Pr(T ≤ t) =Pr(RBC ≤ t + BC)

=FRBC (t + BC) (5.17)

Therefore, BC is the location parameter for the distribution of T implying the CDF of T is a

monotonic function of BC [12, pg. 116,134],[73, p. 117]. All three properties from Definition

4 are met for T defined in Equation 5.15 and therefore T is a generalized test variable which is

stochastically decreasing in BC. From Equation 5.14 and 5.15, the generalized p-value for this test

is given by

p(x) =Pr(T ≥ tobs | BC = BC0)

=Pr(RBC − BC ≥ tobs | BC = BC0)

=Pr(RBC − BC0 ≥ 0)

=Pr(RBC ≥ BC0) (5.18)
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The probability in Equation 5.18 is evaluated via Monte Carlo methods by generating a large

number of values for RBC (in the same manner as was done in Section 3.3.3 for the GCI), and

then determining the proportion of these values that satisfy the inequality in Equation 5.18 [73, p.

119].

5.3.2 One-sided Hypothesis Test on the Difference of Two Bayes Cost Values.

For testing the hypothesis

H0 : η ≤ η0 vs. H1 : η > η0 (5.3)

recall the parameter of interest, η , is a function of the nuisance parameters, µ j,A , σ j,A , µ j,B , and

σ j,B , j = 1, . . . , k (Equation 5.8). Now define T = T (X; x, ζ) as

T = Rη − η (5.19)

where Rη is defined as

Rη = RBCA − RBCB (5.20)

and RBCA and RBCB are defined as in Equation 3.25, by using Equations 3.16 through 3.19 with the

appropriate sample mean, standard deviation, and sample size for each class within each system. It

is clear following the same reasoning as was presented in Section 5.3.1, that tobs = 0 and all three

properties from Definition 4 are met for T in Equation 5.19. Thus, T = Rη − η is a generalized

test variable which is stochastically decreasing in η . From Equation 5.14 and 5.19, the generalized

p-value for this test is

p(x) =Pr(T ≤ tobs | η = η0)

=Pr(Rη − η ≤ tobs | η = η0)

=Pr(Rη ≤ η0)

=Pr(RBCA − RBCB ≤ η0) (5.21)

The probability in Equation 5.21 is evaluated via Monte Carlo methods by generating a large number

of values for RBCA − RBCB (in the same manner as was done in Section 3.3.3 for the GCI, however,

now two BC GPQs are found, one for each classification system, and their difference stored). Then

the proportion of these values that satisfy the inequality in Equation 5.21 is determined [73, p. 119].
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5.4 Simulation Results

A simulation study was conducted to demonstrate the performance of the delta method

and generalized hypothesis tests for BC and η . Various scenarios are considered including

different sample sizes (n j = 10, 50, 100, 250), underlying distributions of the feature used for

classification (normal and gamma), differing costs associated with the misclassification outcomes,

and classification accuracy (measured by BC/η value). All scenarios assume a classifier with three

classes and two thresholds (θ∗1 < θ
∗
2) to distinguish between adjacent classes.

All scenarios utilize 3000 simulation runs in R assuming a significance level of α = 0.05.

When required, numerical minimization is performed using the optim function in R (”L-BFGS-B”

method) [52]. Performance of the hypothesis tests is measured with the simulation by estimating

the size and power of each test.

Definition 5 (Power Function).

The power function of a hypothesis test with rejection region R is the function of θ
defined by β(θ) = Pθ (X ∈ R) [12, p. 383]

Definition 6 (Size α Test).

For 0 ≤ α ≤ 1 , a test with power function β(θ) is a size α test if supθ∈Θ0
β(θ) = α .[12,

p. 385]

To evaluate the performance of the hypothesis test, the probability of rejecting the null hypothesis is

determined for multiple BC (or η) values. The power function for a fixed sample size is monotone

in θ (see for example, Figure 6.1). Therefore, β(θ) is first determined at the boundary of the null and

alternate parameter space (BC = BC0 , η = η0) to estimate the size of the test (supθ∈Θ0
β(θ)). Then

values in the alternate hypothesis space (BC < BC0 , η > η0) are evaluated to estimate the power

at increasing increments within the alternate hypothesis. In Section 5.4.1, the performance of the

one-sided hypothesis test on a single BC value is evaluated and in Section 5.4.2, the performance of

the one-sided hypothesis test on the difference of two independent BC values is evaluated.

5.4.1 One-sided Hypothesis Test on a Single Bayes Cost Value.

Four BC0 values are chosen to demonstrate a range of potential classification system

performance thresholds. Under the assumption of all ci| j p j = 1 , for i , j , BC0 = 0.3, 0.5, 1.0, 1.25.

For the two additional cost structures, chosen as the cost structures used in previous chapters,
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BC0 was chosen to reflect similar scenarios (ie. similar normal curves) with the appropriate cost

structure applied (recall Cost1 =

[
0 1 2
1 0 1
2 1 0

]
, Cost2 =

[
0 2 5
1 0 3
1 3 0

]
, and all p j = 1

3 ). This results in

BC0,Cost1 = 0.1, 0.2, 0.35, 0.45 and BC0,Cost2 = 0.2, 0.4, 0.7, 0.9. The normal distribution parameters

to achieve these BC0 values are presented in Table 5.1. To study the power at differing BC values

in the alternate hypothesis, the means of the first and third classes are varied to achieve the required

BC value.

Table 5.1: Distributional parameters for the parametric hypothesis test simulation.

Distribution BC0 Class 1 Class 2 Class 3

Normal (Equal Costs) µ σ µ σ µ σ

0.30 -2.879 1 0 1 2.879 1
0.50 -2.301 1 0 1 2.301 1
1.00 -1.349 1 0 1 1.349 1
1.25 -0.978 1 0 1 0.978 1

Normal (Cost1) µ σ µ σ µ σ

0.10 -2.879 1 0 1 2.879 1
0.20 -2.077 1 0 1 2.077 1
0.35 -1.333 1 0 1 1.333 1
0.45 -0.985 1 0 1 0.985 1

Normal (Cost2) µ σ µ σ µ σ

0.20 -2.976 1 0 1 2.976 1
0.40 -2.187 1 0 1 2.187 1
0.70 -1.408 1 0 1 1.408 1
0.90 -0.989 1 0 1 0.989 1

Gamma (Equal Costs) α β α β α β

0.30 1.3 1 2.3 3.7 5 10.743
0.50 1.3 1 2.3 3.7 5 5.234
1.00 1.3 1 2 1.5 4 1.889
1.25 1.3 1 2 1.5 4 1.162

Gamma distributed features are also considered for the equal weights scenario in order to

evaluate the performance of the hypothesis tests when the assumption of normality is not met.

The gamma distributional parameters used are presented in Table 5.1. To vary the BC values for
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evaluating the power of the test, the α and β parameters from the second and third classes are varied

appropriately.

The size and power of the delta and generalized hypothesis tests for equal weights are presented

in Table 5.2 for a normally distributed feature and in Table 5.5 for a gamma distributed feature7.

Simulation results for a normally distributed feature with Cost1 are presented in Table 5.3 and in

Table 5.4 for Cost2.

In general, the performance of the delta and generalized hypothesis tests are similar. Usually,

the delta method hypothesis test is slightly more powerful than the generalized hypothesis test,

however when this occurs the delta method test often has a size > α ,which is not desirable. Overall,

the size of the generalized hypothesis tests is smaller than the size of the delta method hypothesis

test, and is usually bounded ≤ α . For n j = 10 and equal weights (Table 5.2), the delta method

size far exceeds 0.05 (α ∈ [0.09, 0.118]). Therefore, the generalized hypothesis test should be used

over the delta method tests for small sample sizes to assure α is maintained. As BC0 approaches

the value of chance classification (BC=1.5 for a three-class scenario) the feature’s distributions for

each class become more overlapped, making determination of the optimal point and correct class

ordering more difficult. Therefore, as BC0 increases, the performance of both tests is degraded with

respect to size (see Table 5.2, BC0 = 1.25). This is more apparent when observing the generalized

hypothesis test.

For the unequal cost scenarios with n j ≥ 50 , the delta method performs better with respect

to power if a size of ≈ α is acceptable (Tables 5.3 and 5.4). However, the generalized hypothesis

test has very similar power to the delta method test, and maintains size ≤ α (except for the one case

where n j = 10 and BC0 = 0.9 for Cost2).

As expected, the performance of both methods is degraded when the feature is not normally

distributed (see Table 5.5). Overall, the performance for the gamma distributed feature is fair for

most scenarios and reflects the robustness in these methods for minor deviations from normality.

7A detectable difference equal to BC0 would result in testing at BC = 0 which is not possible with a normal or gamma
distributed feature. Instead, the power at this detectable difference is approximated by testing at BC = 0.001.
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Table 5.2: Power for three classes with a normally distributed feature with equal weights. Detectable

difference indicates the difference of the assumed true BC value and BC0 (BC < BC0). The power

at a detectable difference of zero is the estimated size of the hypothesis test.

Detectable Delta Hypothesis Test Generalized Hypothesis Test

Difference n j =10 50 100 250 10 50 100 250

BC0 = 0.30 0 (α) 0.118 0.061 0.071 0.063 0.018 0.028 0.043 0.046
0.01 0.131 0.086 0.106 0.122 0.023 0.038 0.069 0.092
0.05 0.193 0.273 0.415 0.678 0.040 0.158 0.312 0.614
0.10 0.332 0.660 0.882 0.999 0.087 0.508 0.823 0.997
0.20 0.758 0.999 1.000 1.000 0.364 0.998 1.000 1.000
0.30 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

BC0 = 0.50 0 (α) 0.105 0.053 0.069 0.061 0.025 0.031 0.045 0.047
0.01 0.114 0.073 0.092 0.103 0.030 0.040 0.067 0.082
0.05 0.160 0.207 0.304 0.505 0.043 0.125 0.230 0.455
0.10 0.239 0.465 0.695 0.957 0.075 0.340 0.617 0.944
0.20 0.501 0.945 0.997 1.000 0.210 0.898 0.994 1.000
0.30 0.810 1.000 1.000 1.000 0.503 1.000 1.000 1.000
0.40 0.984 1.000 1.000 1.000 0.890 1.000 1.000 1.000
0.50 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

BC0 = 1.00 0 (α) 0.090 0.055 0.064 0.056 0.044 0.043 0.054 0.051
0.01 0.097 0.071 0.085 0.096 0.047 0.054 0.074 0.085
0.05 0.134 0.164 0.246 0.399 0.069 0.128 0.213 0.383
0.10 0.193 0.358 0.558 0.870 0.108 0.308 0.525 0.860
0.20 0.380 0.818 0.975 1.000 0.229 0.788 0.968 1.000
0.30 0.586 0.990 1.000 1.000 0.430 0.985 1.000 1.000
0.40 0.798 1.000 1.000 1.000 0.649 1.000 1.000 1.000
0.50 0.934 1.000 1.000 1.000 0.859 1.000 1.000 1.000

BC0 = 1.25 0 (α) 0.095 0.062 0.061 0.057 0.068 0.054 0.055 0.054
0.01 0.103 0.076 0.086 0.095 0.074 0.071 0.081 0.093
0.05 0.144 0.165 0.240 0.401 0.106 0.153 0.231 0.394
0.10 0.202 0.361 0.551 0.871 0.158 0.340 0.537 0.867
0.20 0.384 0.813 0.971 1.000 0.315 0.798 0.970 1.000
0.30 0.584 0.987 1.000 1.000 0.518 0.985 1.000 1.000
0.40 0.789 1.000 1.000 1.000 0.725 1.000 1.000 1.000
0.50 0.920 1.000 1.000 1.000 0.887 1.000 1.000 1.000
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Table 5.3: Power for three classes with a normally distributed feature with the Cost1 cost structure.

Detectable difference indicates the difference of the assumed true BC value and BC0 (BC < BC0).

The power at a detectable difference of zero is the estimated size of the hypothesis test.

Detectable Delta Hypothesis Test Generalized Hypothesis Test

Difference n j =10 50 100 250 10 50 100 250

BC0 = 0.10 0 (α) 0.118 0.061 0.071 0.063 0.017 0.027 0.043 0.046
0.01 0.161 0.164 0.228 0.355 0.029 0.080 0.151 0.292
0.05 0.526 0.951 0.997 1.000 0.175 0.891 0.994 1.000
0.10 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

BC0 = 0.20 0 (α) 0.097 0.052 0.068 0.061 0.022 0.030 0.045 0.046
0.01 0.126 0.119 0.164 0.247 0.032 0.066 0.118 0.210
0.05 0.318 0.698 0.917 0.999 0.116 0.590 0.880 0.999
0.10 0.715 0.998 1.000 1.000 0.413 0.998 1.000 1.000
0.15 0.980 1.000 1.000 1.000 0.892 1.000 1.000 1.000
0.20 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

BC0 = 0.35 0 (α) 0.089 0.062 0.064 0.060 0.032 0.038 0.046 0.049
0.01 0.111 0.098 0.130 0.190 0.041 0.070 0.106 0.167
0.05 0.252 0.519 0.764 0.980 0.109 0.436 0.712 0.974
0.10 0.532 0.972 0.999 1.000 0.317 0.948 0.998 1.000
0.15 0.840 1.000 1.000 1.000 0.636 1.000 1.000 1.000
0.20 0.977 1.000 1.000 1.000 0.911 1.000 1.000 1.000
0.25 1.000 1.000 1.000 1.000 0.996 1.000 1.000 1.000
0.30 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

BC0 = 0.45 0 (α) 0.106 0.055 0.071 0.062 0.038 0.044 0.048 0.051
0.01 0.112 0.099 0.117 0.167 0.048 0.073 0.099 0.151
0.05 0.236 0.437 0.660 0.939 0.117 0.375 0.616 0.931
0.10 0.464 0.907 0.992 1.000 0.289 0.878 0.991 1.000
0.15 0.742 0.998 1.000 1.000 0.556 0.997 1.000 1.000
0.20 0.931 1.000 1.000 1.000 0.833 1.000 1.000 1.000
0.25 0.993 1.000 1.000 1.000 0.965 1.000 1.000 1.000
0.30 1.000 1.000 1.000 1.000 0.998 1.000 1.000 1.000
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Table 5.4: Power for three classes with a normally distributed feature with the Cost2 cost structure.

Detectable difference indicates the difference of the assumed true BC value and BC0 (BC < BC0).

The power at a detectable difference of zero is the estimated size of the hypothesis test.

Detectable Delta Hypothesis Test Generalized Hypothesis Test

Difference n j =10 50 100 250 10 50 100 250

BC0 = 0.20 0 (α) 0.136 0.072 0.077 0.065 0.022 0.034 0.047 0.046
0.01 0.158 0.105 0.134 0.158 0.028 0.049 0.085 0.118
0.05 0.274 0.415 0.604 0.890 0.066 0.269 0.497 0.846
0.10 0.515 0.903 0.992 1.000 0.175 0.811 0.982 1.000
0.15 0.828 1.000 1.000 1.000 0.454 1.000 1.000 1.000
0.20 1.000 1.000 1.000 1.000 0.999 1.000 1.000 1.000

BC0 = 0.40 0 (α) 0.119 0.065 0.071 0.060 0.031 0.037 0.050 0.046
0.01 0.132 0.084 0.113 0.119 0.036 0.054 0.077 0.099
0.05 0.193 0.253 0.380 0.634 0.065 0.172 0.306 0.588
0.10 0.310 0.600 0.829 0.993 0.115 0.487 0.773 0.991
0.15 0.465 0.892 0.991 1.000 0.206 0.830 0.984 1.000
0.20 0.656 0.992 1.000 1.000 0.339 0.983 1.000 1.000
0.25 0.828 1.000 1.000 1.000 0.552 1.000 1.000 1.000
0.30 0.954 1.000 1.000 1.000 0.784 1.000 1.000 1.000

BC0 = 0.70 0 (α) 0.104 0.062 0.070 0.058 0.046 0.047 0.057 0.051
0.01 0.114 0.080 0.095 0.102 0.049 0.060 0.077 0.091
0.05 0.160 0.198 0.294 0.497 0.082 0.150 0.255 0.470
0.10 0.243 0.460 0.669 0.951 0.128 0.392 0.632 0.946
0.15 0.339 0.725 0.938 1.000 0.190 0.668 0.920 1.000
0.20 0.468 0.921 0.997 1.000 0.285 0.885 0.994 1.000
0.25 0.609 0.988 1.000 1.000 0.403 0.983 1.000 1.000
0.30 0.731 0.999 1.000 1.000 0.549 0.999 1.000 1.000

BC0 = 0.90 0 (α) 0.105 0.065 0.063 0.058 0.064 0.056 0.056 0.053
0.01 0.113 0.082 0.094 0.100 0.072 0.073 0.086 0.095
0.05 0.155 0.187 0.267 0.457 0.103 0.161 0.251 0.441
0.10 0.226 0.417 0.622 0.915 0.151 0.386 0.601 0.910
0.15 0.318 0.672 0.903 0.999 0.225 0.636 0.891 0.999
0.20 0.427 0.870 0.990 1.000 0.314 0.845 0.987 1.000
0.25 0.553 0.973 1.000 1.000 0.420 0.965 1.000 1.000
0.30 0.670 0.997 1.000 1.000 0.545 0.996 1.000 1.000
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Table 5.5: Power for three classes with a gamma distributed feature with equal weights. Detectable

difference indicates the difference of the assumed true BC value and BC0 (BC < BC0). The power

at a detectable difference of zero is the estimated size of the hypothesis test.

Detectable Delta Hypothesis Test Generalized Hypothesis Test

Difference n j =10 50 100 250 10 50 100 250

BC0 = 0.30 0 (α) 0.085 0.038 0.034 0.014 0.012 0.017 0.018 0.012
0.01 0.092 0.051 0.050 0.031 0.015 0.023 0.032 0.022
0.05 0.143 0.170 0.216 0.353 0.026 0.097 0.160 0.294
0.10 0.273 0.573 0.817 0.990 0.087 0.457 0.756 0.986
0.20 0.603 0.989 1.000 1.000 0.296 0.974 1.000 1.000
0.30 0.832 0.989 0.999 1.000 0.975 1.000 1.000 1.000

BC0 = 0.50 0 (α) 0.123 0.089 0.107 0.089 0.031 0.055 0.080 0.073
0.01 0.131 0.111 0.139 0.153 0.036 0.070 0.111 0.130
0.05 0.182 0.264 0.375 0.607 0.054 0.188 0.315 0.571
0.10 0.270 0.547 0.768 0.975 0.093 0.432 0.711 0.968
0.20 0.534 0.965 0.999 1.000 0.242 0.932 0.998 1.000
0.30 0.747 1.000 1.000 1.000 0.599 1.000 1.000 1.000
0.40 0.913 1.000 1.000 1.000 0.883 1.000 1.000 1.000
0.50 0.833 0.989 0.999 1.000 1.000 1.000 1.000 1.000

BC0 = 1.00 0 (α) 0.142 0.171 0.221 0.313 0.073 0.146 0.202 0.298
0.01 0.154 0.201 0.281 0.418 0.083 0.174 0.256 0.406
0.05 0.205 0.371 0.546 0.819 0.123 0.329 0.515 0.807
0.10 0.287 0.609 0.825 0.989 0.182 0.574 0.804 0.987
0.20 0.484 0.930 0.995 1.000 0.358 0.913 0.995 1.000
0.30 0.660 0.997 1.000 1.000 0.562 0.996 1.000 1.000
0.40 0.778 1.000 1.000 1.000 0.766 1.000 1.000 1.000
0.50 0.962 1.000 1.000 1.000 0.919 1.000 1.000 1.000

BC0 = 1.25 0 (α) 0.129 0.099 0.085 0.061 0.117 0.094 0.083 0.061
0.01 0.143 0.121 0.125 0.112 0.127 0.117 0.117 0.110
0.05 0.198 0.258 0.341 0.493 0.169 0.240 0.332 0.490
0.10 0.286 0.511 0.701 0.931 0.249 0.490 0.692 0.930
0.20 0.490 0.913 0.992 1.000 0.439 0.905 0.991 1.000
0.30 0.690 0.999 1.000 1.000 0.661 0.998 1.000 1.000
0.40 0.839 1.000 1.000 1.000 0.847 1.000 1.000 1.000
0.50 0.921 1.000 1.000 1.000 0.953 1.000 1.000 1.000
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5.4.2 One-sided Hypothesis Test on the Difference of Two Bayes Cost Values.

To evaluate the performance of the delta method and generalized hypothesis tests used for

comparing the performance of two independent classification systems with respect to their BC

value, η0 is fixed at zero. All three cost structures considered previously are also used here: all

ci| j p j = 1 (for i , j), Cost1 =

[
0 1 2
1 0 1
2 1 0

]
, and Cost2 =

[
0 2 5
1 0 3
1 3 0

]
(all with p j = 1

3 ). The purpose

of this hypothesis test is to compare two competing classification systems, and therefore, the cost

structure placed on classification system A and classification system B are always the same. When

the costs of misclassification are equal, normal and gamma distributed features are considered. For

the unequal cost scenarios only normally distributed features are used. In order to evaluate the size

and power of the test, the performance of classification system A is fixed (BCA = 0.80 for equal

costs, BCA = 0.50 for Cost1, and BCA = 0.70 for Cost2) and the performance of classification

system B is varied to achieve the desired η values.

The power and size of each hypothesis test is estimated by simulation. The results for equal

costs are presented in Table 5.6 for a normally distributed feature and in Table 5.7 for a gamma

distributed feature. The results for Cost1 and Cost2 are presented in Tables 5.8 and 5.9, respectively.

When all ci| j p j = 1 , for i , j , the delta and generalized hypothesis tests perform similarly well.

Again, for n j = 10 the delta method hypothesis test has size greater than α (α ∈ [0.053, 0.061]),

however not by a large margin, and maintained equivalent or higher power than the generalized

hypothesis test (Table 5.6). The gamma distributed feature does not degrade the performance of

the hypothesis tests as much as when testing a single BC value (see Section 5.4.1). In fact, the

performance with the gamma distributed feature is good, with size ≈ α (Table 5.7). Since η is the

difference of the BC values and therefore is a function of the difference of the distributions, this test

statistic may be more similar to a normal distribution as compared to the one-sided test on a single

BC value with a gamma distributed feature.

Similar to the one sided hypothesis tests on a single BC value, when costs are unequal, the delta

method hypothesis test has slightly higher power than the generalized hypothesis test. However,

again the delta method hypothesis also has slightly worse size than the generalized hypothesis test

(see Tables 5.8 and 5.9).
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Table 5.6: Power for three-class systems with normally distributed features with equal weights for

testing η ≤ 0 .Detectable difference indicates the difference of the assumed true value of BCA−BCB

(η ≥ 0). The power at a detectable difference of zero is the estimated size of the hypothesis test.

Detectable Delta Hypothesis Test Generalized Hypothesis Test

Difference n j =10 50 100 250 10 50 100 250

η0 = 0 0 (α) 0.061 0.052 0.043 0.052 0.047 0.048 0.041 0.051
0.01 0.066 0.060 0.056 0.078 0.049 0.057 0.054 0.076
0.05 0.086 0.112 0.147 0.254 0.066 0.109 0.142 0.253
0.10 0.116 0.222 0.345 0.629 0.095 0.213 0.338 0.628
0.15 0.155 0.374 0.593 0.908 0.125 0.368 0.588 0.906
0.20 0.206 0.558 0.816 0.991 0.169 0.550 0.811 0.991
0.25 0.268 0.733 0.939 1.000 0.222 0.724 0.939 1.000
0.30 0.340 0.877 0.989 1.000 0.293 0.869 0.989 1.000
0.35 0.424 0.951 0.998 1.000 0.364 0.948 0.998 1.000
0.40 0.504 0.985 1.000 1.000 0.450 0.983 1.000 1.000
0.45 0.594 0.995 1.000 1.000 0.541 0.995 1.000 1.000
0.50 0.685 1.000 1.000 1.000 0.638 1.000 1.000 1.000

Table 5.7: Power for three-class systems with gamma distributed features with equal weights for

testing η ≤ 0 .Detectable difference indicates the difference of the assumed true value of BCA−BCB

(η ≥ 0). The power at a detectable difference of zero is the estimated size of the hypothesis test.

Detectable Delta Hypothesis Test Generalized Hypothesis Test

Difference n j =10 50 100 250 10 50 100 250

η0 = 0 0 (α) 0.070 0.059 0.066 0.059 0.035 0.055 0.062 0.059
0.01 0.073 0.067 0.082 0.085 0.038 0.064 0.078 0.085
0.05 0.094 0.124 0.166 0.242 0.054 0.117 0.165 0.240
0.10 0.121 0.215 0.322 0.542 0.081 0.209 0.321 0.539
0.15 0.152 0.334 0.502 0.808 0.112 0.328 0.499 0.812
0.20 0.194 0.480 0.690 0.953 0.157 0.478 0.694 0.954
0.25 0.266 0.684 0.901 0.999 0.202 0.670 0.896 0.999
0.30 0.333 0.841 0.974 1.000 0.263 0.834 0.975 1.000
0.35 0.409 0.934 0.996 1.000 0.337 0.929 0.996 1.000
0.40 0.499 0.981 1.000 1.000 0.422 0.979 1.000 1.000
0.45 0.586 0.996 1.000 1.000 0.519 0.996 1.000 1.000
0.50 0.681 0.999 1.000 1.000 0.614 0.999 1.000 1.000
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Table 5.8: Power for three-class systems with normally distributed features with the Cost1 structure

for testing η ≤ 0 . Detectable difference indicates the difference of the assumed true value of

BCA − BCB (η ≥ 0). The power at a detectable difference of zero is the estimated size of the

hypothesis test.

Detectable Delta Hypothesis Test Generalized Hypothesis Test

Difference n j =10 50 100 250 10 50 100 250

η0 = 0 0 (α) 0.060 0.050 0.044 0.051 0.037 0.042 0.052 0.053
0.01 0.071 0.078 0.073 0.109 0.043 0.065 0.088 0.109
0.05 0.126 0.241 0.366 0.667 0.081 0.241 0.366 0.675
0.10 0.233 0.605 0.857 0.997 0.168 0.601 0.851 0.995
0.15 0.378 0.909 0.994 1.000 0.313 0.895 0.994 1.000
0.20 0.570 0.992 1.000 1.000 0.512 0.991 1.000 1.000
0.25 0.752 1.000 1.000 1.000 0.704 1.000 1.000 1.000
0.30 0.893 1.000 1.000 1.000 0.869 1.000 1.000 1.000
0.35 0.971 1.000 1.000 1.000 0.962 1.000 1.000 1.000
0.40 0.995 1.000 1.000 1.000 0.995 1.000 1.000 1.000
0.45 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.50 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
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Table 5.9: Power for three-class systems with normally distributed features with the Cost2 structure

for testing η ≤ 0 . Detectable difference indicates the difference of the assumed true value of

BCA − BCB (η ≥ 0). The power at a detectable difference of zero is the estimated size of the

hypothesis test.

Detectable Delta Hypothesis Test Generalized Hypothesis Test

Difference n j =10 50 100 250 10 50 100 250

η0 = 0 0 (α) 0.053 0.053 0.048 0.051 0.037 0.045 0.048 0.049
0.01 0.059 0.061 0.064 0.079 0.040 0.055 0.065 0.075
0.05 0.082 0.129 0.168 0.300 0.057 0.120 0.171 0.286
0.10 0.124 0.266 0.412 0.728 0.087 0.263 0.403 0.731
0.15 0.179 0.453 0.706 0.964 0.131 0.462 0.699 0.966
0.20 0.242 0.669 0.903 0.998 0.186 0.664 0.896 0.998
0.25 0.319 0.850 0.983 1.000 0.255 0.837 0.982 1.000
0.30 0.424 0.944 0.998 1.000 0.343 0.937 0.999 1.000
0.35 0.528 0.988 1.000 1.000 0.443 0.984 1.000 1.000
0.40 0.629 0.999 1.000 1.000 0.548 0.997 1.000 1.000
0.45 0.727 1.000 1.000 1.000 0.672 1.000 1.000 1.000
0.50 0.822 1.000 1.000 1.000 0.784 1.000 1.000 1.000

5.5 Summary

Generalized and delta method hypothesis tests were developed for testing one sided hypotheses

on a single BC value as well as the difference between two BC values for comparing independent

competing classification systems. Both methods are developed assuming classification systems that

use a single feature that is independently and normally distributed for each class. The performance

of the proposed methods was demonstrated with simulations that evaluated the power and size of

the tests. Varying scenarios as well as null hypothesis values were considered with the simulation.

In general, the generalized hypothesis test performed better and could be recommended for

both forms of hypotheses (tests on BC0 and η) and the various cost scenarios. Although, the delta

method tests performed similar to the generalized tests and often had greater power, their size was

sometimes greater than α which is not desirable. However, the delta method performance was

improved for tests on η , which might be due to the increase in total sample size (when considering

two classification systems instead of one) or the structure of the test statistic itself. For both methods,

105



the performance with respect to size was degraded for testing against the BC0 value which was

close to chance classification (BC0 = 1.5). When the assumption of normality was not met, the

performance of the hypothesis tests on a single BC0 value was degraded. However, for testing the

difference of two BC values, the performance of the tests remained fairly consistent. Therefore,

it seems that when testing a hypothesis on η , the methods are more robust to departures from

normality.
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VI. Nonparametric Hypothesis Tests

6.1 Introduction

In this chapter, hypothesis tests for testing the performance of a classification system with

BC are developed, making no assumptions about the classification system’s underlying feature

distributions or structure. Instead, inference methods are derived from the resulting classification

outcomes from a classification system at a fixed θ ∈ Θ , as was done for the nonparametric CIs

derived in Chapter 4. Under this nonparametric framework, it is assumed that the classification

system outcomes from each class may be modeled with independent multinomial distributions.

This chapter will consider the same two hypotheses that were developed in Chapter 5 under the

parametric framework. The first hypothesis tests whether or not a classification system performs at

least as well as a specified threshold value, BC0 , where

H0 : BC ≥ BC0 vs. H1 : BC < BC0 (5.1)

The second hypothesis considered compares two independent competing classification systems’

performance. This is done by testing η , the difference in BC values from the two systems where

η = BCA − BCB (5.2)

and

H0 : η ≤ η0 vs. H1 : η > η0 (5.3)

For the specific case of testing if classification system B is performing better than classification

system A, this hypothesis is tested at η0 = 0 .

In Section 6.2, exact small sample methods are developed for testing both hypothesis tests,

using the fiducial theory developed in Section 4.2. In Section 6.3, nonparametric hypothesis tests

for both hypotheses are developed for large sample sizes using likelihood ratio tests (LRTs). A

simulation is conducted to demonstrate the performance of the tests with respect to power and size,

and the results are presented in Section 6.4. The overall findings and conclusions are presented in

Section 6.5.
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6.2 Exact Hypothesis Tests

Under the nonparametric framework and when sample sizes are small, hypothesis tests may be

conducted using similar exact methods as those used for developing fiducial intervals around BC in

Section 4.2. In fact, the fiducial intervals presented in Section 4.2 are simply the inversion of the

acceptance region of a two sided hypothesis test (BC = BC0) on BC [7].

6.2.1 One-sided Hypothesis Test on a Single Bayes Cost Value.

The hypothesis of the form

H0 : BC ≥ BC0 vs. H1 : BC < BC0 (5.1)

may be tested by calculating an associated p-value for the test. Recall from Theorem 7 (Section

5.2.1) that a valid p-value is given by

p(x) = sup
θ∈Θ0

Pθ(W(X) ≥ W(x)) (6.1)

when large values of W(X) give evidence that H1 is true. For the nonparametric framework, W(X)

is B̂C defined empirically as

Y = B̂C =

k∑
i=1
i, j

k∑
j=1

ci| j p j
Xi| j

n j
(4.27)

where each Xi| j represents the number of observations classified as the ith class when their true class

is j , n j is the total number of observations for the jth class, and each Xi| j is distributed multinomial.

Once again for the hypothesis in Equation 5.1, large values of W(X) give evidence that H1 is false,

and therefore the p-value for this test is

p(x) = sup
θ∈Θ0

Pθ(W(X) ≤ W(x)) (5.5)

Under the multinomial framework, a restriction on the BC parameter space is also a restriction

on the joint multinomial parameter space, S = {p = (p1, . . . ,pk) : pj = (p1| j, . . . , pk| j), pi| j ≥ 0 ,

and
∑k

i=1 pi| j = 1} . Thus, the hypotheses may be rewritten as

H0 : p ∈ S0 vs. H1 : p ∈ SC
0 (6.2)

where S0 is the set of multinomial probabilities which result in BC ≥ BC0 , and is defined as

S0 = {p = (p1, . . . ,pk) : pj = (p1| j, . . . , pk| j), pi| j ≥ 0,
∑k

i=1 pi| j = 1, and
k∑

i=1
i, j

k∑
j=1

ci| j p j pi| j ≥ BC0} .
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From an observed B̂C , the exact p-value for testing the hypothesis BC ≥ BC0 is given by

p(x) = sup
BC≥BC0

PBC(Y ≤ y)

= sup
p∈S0

Pp(Y ≤ y)

= sup
p∈S0

y∑
t=0

∑
x∈A
y=t

fX(x | p) (6.3)

where A is the joint multinomial sample space which is the set of 1 × k2 sized vectors x =

(x1|1, x2|1, . . . , xk−1|k, xk|k) where each xi| j is a nonnegative integer and
∑k

i=1 xi| j = n j , p ∈ S , and

fX(x | p) =

k∏
j=1

fXj(xj)

=

k∏
i=1

k∏
j=1

n j!
pxi| j

i| j

xi| j!
(4.8)

The hypothesis is tested by calculating the p-value in Equation 6.3 and comparing this value to the

chosen significance level, α . For p(x) less than α , the null hypothesis is rejected.

6.2.2 One-sided Hypothesis Test on the Difference of Two Bayes Cost Values.

To test the hypothesis of the form

H0 : η ≤ η0 vs. H1 : η > η0 (5.3)

under the framework of an exact hypothesis test, modeling the outcomes from the two classification

systems with independent multinomial distributions, the parameter of interest, η , is a function of

multinomial probabilities such that

η =

k∑
i=1,i, j

k∑
j=1

ci| j,A p j pi| j,A −

k∑
i=1,i, j

k∑
j=1

ci| j,B p j pi| j,B (6.4)

and

Y = η̂ =

k∑
i=1,i, j

k∑
j=1

ci| j,A p j
Xi| j,A

n j,A
−

k∑
i=1,i, j

k∑
j=1

ci| j,B p j
Xi| j,B

n j,B
(6.5)

DefineAA as the joint multinomial sample space for classification system A, which is the set of 1×k2

sized vectors whereAA = {xA = (x1,A, . . . , xk,A) : xk,A = (x1| j,A, . . . , xk| j,A), xi| j,A ∈ Z+,
∑k

i=1 xi| j,A =

n j,A} . Similarly, defineAB as the analogous joint multinomial sample space for classification system
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B. Then the sample space for the entire experiment (for both classification systems) may be defined

asAA,B which is the set of 1 × 2k2 sized vectors whereAA,B = {(xA, xB) : xA ∈ AA, xB ∈ AB} .

Also, define the joint multinomial probability space for classification system A where pA ∈

S = {pA = (p1,A, . . . ,pk,A) : pj,A = (p1| j,A, . . . , pk| j,A), pi| j,A ≥ 0 , and
∑k

i=1 pi| j,A = 1} and

similarly define pB for classification system B. The pmf for this experiment is the joint multinomial

distribution from both classification systems such that

fXA,XB(xA, xB | pA,pB) =

k∏
j=1

fXj,A(xj,A) × fXj,B(xj,B)

=

k∏
i=1

k∏
j=1

n j,A!
pxi| j,A

i| j,A

xi| j,A!
n j,B!

pxi| j,B

i| j,B

xi| j,B!
(6.6)

Once again, the hypotheses may be rewritten as a restriction on the joint multinomial parameter

space.

H0 : (pA,pB) ∈ S2
0 vs. H1 : (pA,pB) ∈ S2C

0 (6.7)

where S2
0 = {(pA,pB) : pA ∈ S,pB ∈ S and η ≤ η0} . Then, for an observed η̂ from a classification

system, the exact p-value for testing the hypothesis in Equation 5.3 is

p(x) = sup
η≤η0

Pη(Y ≥ y)

= sup
(pA,pB)∈S2

0

P(pA,pB)(Y ≥ y)

= sup
(pA,pB)∈S2

0

sup{Y}∑
t=y

∑
(xA,xB)∈AA,B

Y=t

fXA,XB(xA, xB | pA,pB) (6.8)

where Y = {y : y =
k∑

i=1,i, j

k∑
j=1

ci| j,A p j
Xi| j,A
n j,A
−

k∑
i=1,i, j

k∑
j=1

ci| j,B p j
Xi| j,B
n j,B

, (xA, xB) ∈ AA,B} . For an observed

value of η , Y , and a fixed η0 , the hypothesis is tested by calculating the p-value in Equation 6.8

and comparing this value to the chosen significance level, α . If p(x) is less than α , reject the null

hypothesis.

6.3 Likelihood Ratio Tests

LRTs are a general and common method that may be applied for hypothesis testing.

Asymptotic properties of the likelihood ratio also make these tests easy to implement under large
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sample assumptions. For the nonparametric methods developed in this section, it is assumed that

each class has a large sample size (n j ' 50).

Definition 7 (Likelihood Ratio Test Statistic).

The likelihood ratio test statistic for testing H0 : θ ∈ Θ0 versus H1 : θ ∈ ΘC
0 is

λ(x) =
supΘ0 L(θ | x)
supΘL(θ | x)

[12, p. 375]

To conduct a hypothesis test using the likelihood test statistic for large samples sizes, the

following theorem may be used:

Theorem 8. Let X1, . . . , Xn be a random sample from a pdf or pmf f (x | θ) . Under the
regularity conditions . . . , if θ ∈ Θ0 , then the distribution of the statistic −2 log λ(X)
converges to a chi squared distribution as the sample size n → ∞ . The degrees
of freedom of the limiting distribution is the difference between the number of free
parameters specified by θ ∈ Θ0 and the number of free parameters specified by
θ ∈ Θ [12, p. 490].

Regularity conditions are addressed in the Appendix, Section A.5.

6.3.1 One-sided Hypothesis Test on a Single Bayes Cost Value.

For this nonparametric large sample framework, it is again assumed that the outcomes from

the classification system are distributed multinomial. Recall from Section 6.2, that under this

framework, the one sided hypothesis on a single BC value may be written as a restriction on the

joint multinomial parameter space:

H0 : p ∈ S0 vs. H1 : p ∈ SC
0 (6.2)

The likelihood function is a function of the parameters, p , with the data assumed given. Thus,

the likelihood is comprised of the multinomial pmf, however it may be simplified by removing the

constant multipliers which do not depend on the parameters. Therefore,

L(p | x) ∝
k∏

i=1

k∏
j=1

pxi| j

i| j (6.9)

An unrestricted maximization (supΘ L(p | x)) of this likelihood results in the multinomial MLE,

which is given by p̂i| j =
xi| j
n j

. If B̂C ≥ BC0 is observed, then p̂ ∈ S0 which results in
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supΘ0
L(p | x) = supΘ L(p | x) . Therefore,

λ(x) =


1 if B̂C ≥ BC0

supS0 L(p|x)
L(̂p|x) if B̂C < BC0

(6.10)

The degrees of freedom for the test (v) is the difference of the number of free parameters in the

unrestricted parameter space and the restricted parameter space, which is 1. The corresponding

p-value for this large sample hypothesis test is

p(x) =


1 if B̂C ≥ BC0

Pr(χ2
1 ≥ −2 log λ(x)) if B̂C < BC0

(6.11)

For an observed B̂C and a fixed BC0 , the hypothesis is tested by calculating the p-value in Equation

6.11 and comparing this value to the chosen significance level, α . If p(x) is less than α , the null

hypothesis is rejected.

6.3.2 One-sided Hypothesis Test on the Difference of Two Bayes Cost Values.

To test the hypothesis

H0 : η ≤ η0 vs. H1 : η > η0 (5.3)

using a LRT, the equations from Section 6.2.2 are used, where

η =

k∑
i=1,i, j

k∑
j=1

ci| j,A p j pi| j,A −

k∑
i=1,i, j

k∑
j=1

ci| j,B p j pi| j,B (6.4)

and

Y = η̂ =

k∑
i=1,i, j

k∑
j=1

ci| j,A p j
Xi| j,A

n j,A
−

k∑
i=1,i, j

k∑
j=1

ci| j,B p j
Xi| j,B

n j,B
(6.5)

AA,B , pA , and pB are defined as they were in Section 6.2.2. Recall, the hypothesis to be tested may

be written as a restriction on the joint multinomial parameter space.

H0 : (pA,pB) ∈ S2
0 vs. H1 : (pA,pB) ∈ S2C

0 (6.7)

where S2
0 = {(pA,pB) : pA ∈ S,pB ∈ S and η ≤ η0} . The likelihood function for the joint

multinomial distribution of both classification systems is

L(pA,pB | xA, xA) ∝
k∏

i=1

k∏
j=1

pxi| j,A

i| j,A pxi| j,B

i| j,B (6.12)
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An unrestricted maximization (supΘ L(pA,pB | xA, xA)) of this likelihood results in the multinomial

MLEs, which are given by p̂i| j =
xi| j
n j
. If η̂ ≤ η0 is observed, then (p̂A, p̂B) ∈ S2

0 which results in

supΘ0
L(pA,pB | xA, xA) = supΘ L(pA,pB | xA, xA) . Therefore,

λ(x) =


1 if η̂ ≤ η0

sup
S2

0
L(pA,pB |xA,xA)

L(p̂A,p̂B |xA,xA) if η̂ > η0

(6.13)

The degrees of freedom for the test (v) is the difference of the number of free parameters in the

unrestricted parameter space and the restricted parameter space, which is 1. The p-value for this

hypothesis test is

p(x) =


1 if η̂ ≤ η0

Pr(χ2
1 ≥ −2 log λ(x)) if η̂ > η0

(6.14)

For an observed η̂ and a fixed η0 , the hypothesis is tested by calculating the p-value in Equation

6.14 and comparing this value to the chosen significance level, α . For p(x) less than α , the null

hypothesis is rejected.

6.4 Simulation Results

A simulation study was conducted to demonstrate the performance of the exact and likelihood

ratio hypothesis tests for BC and η . Various scenarios are considered including different sample

sizes (n j = 5, 10, 20, 30 for the exact test and n j = 10, 50, 100, 250 for the LRT), differing costs

associated with the misclassifications, and classification accuracy (measured by BC0/η0 value).

All scenarios make no assumptions about the structure of the underlying classification system or

feature distributions, and therefore the classification outcomes are simulated with random draws

from multinomial distributions. The exact method is appropriate for small sample sizes and the LRT

method is appropriate for larger sample sizes which is why they are simulated with different sample

size scenarios. However, due to the LRT’s good performance at n j = 10 , further comparisons

between the LRT and exact method are made with small sample sizes using power curves (Section

6.4.1). The performance of the tests is measured by their power and size (Definitions 5 and 6,

Section 5.4). Once again, this is accomplished by determining the probability of rejecting the null

hypothesis for multiple BC (or η) values.
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In Section 6.4.1, the performance of the exact and likelihood ratio one-sided hypothesis tests on

a single BC value is evaluated. In Section 6.4.2, the performance of these tests on the difference of

two BC values is evaluated. All simulations are run in R assuming a significance level of α = 0.05

with 3000 simulation runs [52]. The LRT requires the maximization of the likelihood given the

observed data over the null parameter space. This is accomplished by performing a constrained

maximization of the multinomial log-likelihood in R using the function constrOptim with method

”Nelder-Mead” [52].

6.4.1 One-sided Hypothesis Test on a Single Bayes Cost Value.

For consistency, the same BC0 and cost structures used to demonstrate the performance of

the parametric hypothesis tests in Section 5.4.1 are also used in this section. Recall, four BC0

values are used to demonstrate a range of test performances. Under the assumption of equal

costs on all misclassification probabilities, BC0 = 0.3, 0.5, 1.0, 1.25. For the two additional cost

structures (Cost1 =

[
0 1 2
1 0 1
2 1 0

]
and Cost2 =

[
0 2 5
1 0 3
1 3 0

]
, p j = 1

3 ) BC0,Cost1 = 0.1, 0.2, 0.35, 0.45 and

BC0,Cost2 = 0.2, 0.4, 0.7, 0.9. For all simulated BC values, it is assumed the misclassification

probabilities are equally distributed among the multinomial misclassification outcomes. The size

and power of the exact and likelihood ratio hypothesis tests are presented in Table 6.1 for equal

weights, and Tables 6.2 and 6.3 for Cost1 and Cost2, respectively.

It is clear from these results that the exact hypothesis test is an α or smaller sized test (ie. α

level test). Also, as expected, the exact hypothesis test is conservative and the power of the test

increases as n j increases (Table 6.1). For BC0 = 0.3 and 0.5 and n j = 5 , the test will never reject

the null hypothesis. For both of these BC0 scenarios, the p-values for the tests at B̂C = 0 are 0.21

and 0.06, respectively. Therefore, with n j = 5 these two tests never have enough power to reject the

null hypothesis at α = 0.05. For BC0 = 0.5 , the null hypothesis could be rejected for B̂C = 0 with

a significance level greater than 0.06. Similar scenarios with respect to p-values and power result

for the exact test for Cost1 and Cost2 (Tables 6.2 and 6.3). Notably, these cost structures result in

decreased power for the exact test.

The LRT (n j ≥ 10) is also an α level test (Tables 6.1 through 6.3). Like the exact test, the

power increases for increasing n j . There are also scenarios where this test never rejects the null
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hypothesis, due to comparable reasons as the exact test (Tables 6.2 and 6.3). Finally, when the costs

on the misclassification probabilities are not equal, the LRT generally has higher power than the

exact test when considering the same sample size scenario (n j = 10), with some exceptions for

small BC0 values.

To consider the comparison between the exact test and LRT further, power curves were plotted

for differing BC0 values assuming equal costs and small sample size scenarios (Figure 6.1). These

plots visually demonstrate the similar performance between both hypothesis test methods. Although

the LRT is more powerful than the exact test at n j = 5 , the LRT also has size greater than α at this

sample size. For larger sample sizes considered with the power curves (n j = 20, 30) the exact test is

more powerful than the LRT (see Figure 6.1). Also, it is clear from these power curves that detecting

a more accurate classification system (smaller BC0 value), requires larger sample sizes.
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Table 6.1: Power when the misclassifications have equal weights. Detectable difference indicates

the difference of the assumed true BC value and BC0 (BC > BC0). The power at a detectable

difference of zero is the estimated size of the hypothesis test.

Detectable Exact Hypothesis Test Likelihood Ratio Test

Difference n j =5 10 20 30 10 50 100 250

BC0 = 0.30 0 (α) 0.000 0.045 0.017 0.051 0.037 0.031 0.027 0.026
0.01 0.000 0.049 0.017 0.060 0.045 0.040 0.042 0.051
0.05 0.000 0.070 0.033 0.120 0.071 0.110 0.168 0.349
0.10 0.000 0.128 0.088 0.270 0.128 0.317 0.554 0.911
0.20 0.000 0.360 0.402 0.815 0.367 0.929 0.997 1.000
0.30 0.000 1.000 1.000 1.000 0.992 1.000 1.000 1.000

BC0 = 0.50 0 (α) 0.000 0.030 0.024 0.023 0.027 0.027 0.025 0.026
0.01 0.000 0.033 0.025 0.028 0.029 0.034 0.034 0.044
0.05 0.000 0.057 0.046 0.063 0.041 0.077 0.110 0.228
0.10 0.000 0.082 0.089 0.143 0.068 0.192 0.339 0.722
0.20 0.000 0.183 0.260 0.448 0.169 0.662 0.920 1.000
0.30 0.000 0.395 0.616 0.855 0.389 0.975 1.000 1.000
0.40 0.000 0.729 0.949 0.997 0.727 1.000 1.000 1.000
0.50 0.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

BC0 = 1.00 0 (α) 0.023 0.038 0.037 0.044 0.036 0.027 0.026 0.023
0.01 0.021 0.038 0.041 0.050 0.039 0.031 0.034 0.039
0.05 0.028 0.051 0.063 0.088 0.054 0.062 0.089 0.155
0.10 0.040 0.080 0.099 0.152 0.080 0.132 0.235 0.500
0.20 0.066 0.156 0.223 0.368 0.153 0.418 0.720 0.980
0.30 0.111 0.260 0.445 0.658 0.263 0.773 0.973 1.000
0.40 0.170 0.412 0.688 0.887 0.429 0.960 0.999 1.000
0.50 0.256 0.610 0.882 0.978 0.617 0.997 1.000 1.000

BC0 = 1.25 0 (α) 0.017 0.028 0.046 0.043 0.028 0.022 0.025 0.020
0.01 0.022 0.033 0.051 0.049 0.031 0.026 0.032 0.032
0.05 0.025 0.041 0.076 0.083 0.044 0.056 0.084 0.150
0.10 0.037 0.066 0.118 0.142 0.065 0.119 0.211 0.462
0.20 0.060 0.118 0.246 0.324 0.129 0.375 0.661 0.969
0.30 0.106 0.210 0.444 0.599 0.220 0.705 0.947 1.000
0.40 0.160 0.343 0.672 0.819 0.364 0.923 0.997 1.000
0.50 0.235 0.506 0.842 0.947 0.520 0.992 1.000 1.000
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Table 6.2: Power when the misclassifications have a cost structure given by Cost1. Detectable

difference indicates the difference of the assumed true BC value and BC0 (BC < BC0). The power

at a detectable difference of zero is the estimated size of the hypothesis test.

Detectable Exact Hypothesis Test Likelihood Ratio Test

Difference n j =5 10 20 10 50 100 250

BC0 = 0.10 0 (α) 0.000 0.000 0.039 0.000 0.037 0.028 0.023
0.01 0.000 0.000 0.057 0.000 0.070 0.073 0.118
0.05 0.000 0.000 0.248 0.000 0.451 0.747 0.990
0.10 0.000 0.000 0.984 0.000 1.000 1.000 1.000

BC0 = 0.20 0 (α) 0.000 0.043 0.020 0.034 0.027 0.027 0.023
0.01 0.000 0.047 0.023 0.044 0.045 0.055 0.082
0.05 0.000 0.100 0.079 0.094 0.240 0.415 0.802
0.10 0.000 0.251 0.332 0.262 0.772 0.972 1.000
0.15 0.000 0.571 0.784 0.565 0.996 1.000 1.000
0.20 0.000 1.000 1.000 1.000 1.000 1.000 1.000

BC0 = 0.35 0 (α) 0.010 0.013 0.024 0.045 0.025 0.026 0.032
0.01 0.012 0.019 0.024 0.051 0.042 0.045 0.070
0.05 0.022 0.028 0.070 0.095 0.169 0.278 0.595
0.10 0.045 0.083 0.210 0.183 0.518 0.817 0.995
0.15 0.087 0.190 0.466 0.331 0.883 0.995 1.000
0.20 0.169 0.387 0.761 0.539 0.995 1.000 1.000
0.25 0.306 0.641 0.956 0.773 1.000 1.000 1.000
0.30 0.573 0.887 1.000 0.950 1.000 1.000 1.000

BC0 = 0.45 0 (α) 0.011 0.023 0.020 0.045 0.026 0.023 0.026
0.01 0.012 0.028 0.025 0.055 0.040 0.043 0.056
0.05 0.029 0.056 0.066 0.096 0.149 0.241 0.529
0.10 0.051 0.122 0.177 0.169 0.446 0.739 0.983
0.15 0.082 0.224 0.381 0.291 0.804 0.979 1.000
0.20 0.145 0.389 0.637 0.445 0.974 0.998 1.000
0.25 0.240 0.604 0.865 0.636 0.998 1.000 1.000
0.30 0.374 0.800 0.978 0.813 1.000 1.000 1.000
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Table 6.3: Power when the misclassifications have a cost structure given by Cost2. Detectable

difference indicates the difference of the assumed true BC value and BC0 (BC < BC0). The power

at a detectable difference of zero is the estimated size of the hypothesis test.

Detectable Exact Hypothesis Test Likelihood Ratio Test

Difference n j =5 10 20 10 50 100 250

BC0 = 0.20 0 (α) 0.000 0.000 0.038 0.000 0.040 0.031 0.030
0.01 0.000 0.000 0.043 0.000 0.051 0.045 0.057
0.05 0.000 0.000 0.094 0.000 0.156 0.215 0.451
0.10 0.000 0.000 0.218 0.000 0.427 0.697 0.980
0.15 0.000 0.000 0.500 0.000 0.829 0.987 1.000
0.20 0.000 0.000 1.000 0.000 1.000 1.000 1.000

BC0 = 0.40 0 (α) 0.000 0.000 0.024 0.026 0.030 0.029 0.027
0.01 0.000 0.000 0.030 0.029 0.041 0.039 0.048
0.05 0.000 0.000 0.058 0.046 0.101 0.146 0.285
0.10 0.000 0.000 0.113 0.086 0.252 0.436 0.815
0.15 0.000 0.000 0.211 0.157 0.512 0.804 0.994
0.20 0.000 0.000 0.364 0.268 0.799 0.979 1.000
0.25 0.000 0.000 0.576 0.419 0.963 1.000 1.000
0.30 0.000 0.000 0.805 0.646 1.000 1.000 1.000

BC0 = 0.70 0 (α) 0.000 0.019 0.024 0.046 0.029 0.030 0.024
0.01 0.000 0.023 0.030 0.048 0.035 0.037 0.036
0.05 0.000 0.032 0.052 0.065 0.077 0.102 0.183
0.10 0.000 0.050 0.087 0.088 0.165 0.272 0.601
0.15 0.000 0.075 0.158 0.131 0.308 0.534 0.898
0.20 0.000 0.110 0.226 0.188 0.497 0.789 0.991
0.25 0.000 0.154 0.354 0.241 0.695 0.944 1.000
0.30 0.000 0.219 0.490 0.319 0.855 0.989 1.000

BC0 = 0.90 0 (α) 0.011 0.018 0.020 0.043 0.028 0.026 0.023
0.01 0.010 0.022 0.023 0.046 0.033 0.035 0.037
0.05 0.018 0.032 0.049 0.060 0.072 0.093 0.162
0.10 0.024 0.048 0.081 0.087 0.147 0.242 0.525
0.15 0.032 0.074 0.125 0.129 0.270 0.467 0.851
0.20 0.046 0.117 0.190 0.168 0.435 0.711 0.980
0.25 0.056 0.156 0.288 0.213 0.616 0.890 1.000
0.30 0.070 0.213 0.417 0.265 0.771 0.974 1.000
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Figure 6.1: Power curves for Exact (solid line) and Likelihood Ratio (dashed line) hypothesis tests

for n j = 5 (red), n j = 10 (blue), n j = 20 (green), and n j = 30 (purple) at different BC0 values.
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6.4.2 One-sided Hypothesis Test on the Difference of Two Bayes Cost Values.

For testing the difference of two independent classification systems, η0 = 0 is used. To

consider different detectable differences for the test, BCA is fixed at 0.8 and BCB is varied

(BCB = (0.3, . . . , 0.8)) to simulate the desired η values. Multinomial random variables are generated

assuming the misclassification probabilities are evenly distributed among the classes for all BC

values.

For the exact hypothesis test, the sample space for two independent, three-class classification

systems (AA,B , to consider BCA and BCB simultaneously) becomes very large. Due to this large

sample space, the computational time is also large. Therefore, the test is run for small sample sizes

only and assuming all ci| j p j = 1 , for i , j (allowing for binomial distributions to be used instead of

multinomial distributions, in order to reduce the sample space). The results are presented in Table

6.4. Both the exact and LRT hypothesis tests perform similarly with respect to power and sample

size, although for n j = 10 the exact test is more powerful than the LRT. Also, both tests have size

≤ α.

Table 6.4: Power for multinomial distributed classes with equal weights for testing η ≤ 0 .

Detectable difference indicates the difference of the assumed true value of BCA − BCB (η ≥ 0).

The power at a detectable difference of zero is the estimated size of the hypothesis test.

Detectable Exact Test Likelihood Ratio Test

Difference n j =5 10 10 50 100 250

η0 = 0 0 (α) 0.045 0.038 0.042 0.031 0.030 0.029
0.01 0.052 0.042 0.044 0.039 0.039 0.033
0.05 0.072 0.078 0.051 0.063 0.078 0.102
0.10 0.112 0.141 0.070 0.114 0.169 0.315
0.20 0.197 0.298 0.125 0.301 0.496 0.854
0.30 0.326 0.540 0.208 0.585 0.866 0.997
0.40 0.507 0.752 0.332 0.854 0.989 1.000
0.50 0.687 0.910 0.493 0.977 1.000 1.000
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6.5 Summary

Two nonparametric methods for testing hypotheses on BC were derived, an exact test for small

sample sizes and a LRT based on large sample theory. An interesting result from the simulation is

the similar performance of the exact and LRT hypothesis tests, especially in the hypothesis test on

a single BC value. Although the LRT is an approximate method, it performs similar to the exact

test with respect to power, even for the n j = 10 small sample size. Due to the discrete sample space

of B̂C, although the p-values found with the LRT test are approximate, they are accurate enough

to make the same decision as the exact test for some observed values of BC. This is demonstrated

for an example in Table 6.5, for testing different BC0 values for a three-class classification system

with n j = 10 and B̂C = 0.1. In this example, although the LRT p-values are not the same as the

exact p-values, they result in the same decision (with respect to rejecting or failing to reject the null

hypothesis) for α = 0.05. Consequently, the two methods at times have similar performance with

respect to size and power.

Table 6.5: P-values for exact and likelihood ratio tests for a three-class scenario for testing a single

BC0 value with n j = 10 and B̂C = 0.1

BC0 Exact p-value LRT p-value

0.3 0.184 0.127
0.5 0.029 0.011
1 8.34E-05 1.52E-05

1.25 2.89E-08 3.14E-07

Another result of interest is that when the misclassification weights are unequal, the likelihood

ratio test generally has slightly higher power than the exact test (although notably this comparison

is only made for n j = 10). The exact hypothesis test was implemented to calculate a p-value by

searching the null probability space, incremented by probabilities of 0.05. Therefore, a better search

method for finding these exact p-values may result in more precise (less conservative) values which

could increase the power of this test.
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The methods developed in this section provide flexible hypothesis tests which may be

used for testing the performance of a single classification system or for comparing performance

between classification systems. These hypothesis tests may be implemented despite differing

classification structures or nonparametric scenarios. The exact hypothesis tests perform well, but are

computationally difficult for increasing sample size (especially for tests on η). The LRTs therefore

provide an approximate alternative to the exact test that is easier to implement computationally,

especially for larger n j .
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VII. Applications

7.1 Classifying Breast Cancer

The methods proposed in Chapter 3 are used to distinguish classes of the Breast Tissue data

set from the UCI Machine Learning Repository [4]. This data set consists of 106 observations

of nine continuous features derived from electrical impedance spectroscopy truncated spectrum of

breast tissue, which have been shown to discriminate breast tissue into six categories: Carcinoma

(CAR, n=21), Fibro-adenoma (FAD, n=15), Mastopathy (MAS, n=18), Glandular (GLA, n=16),

Connective (CON, n=14), and Adipose (ADI, n=22) [61]. By grouping the classes GLA, FAD, and

MAS together (denoted FAD+MAS+GLA) this becomes a four-class classification problem. These

three classes are grouped together because their discrimination is not considered important and they

cannot be discriminated using the available features [4, 61]. In [61], linear discriminant analysis

was used to distinguish between various subgroups of classes and it was determined that the low

frequency limit (I0), area under the spectrum normalized by impedance distance between spectral

ends (AREADA), and the maximum of the spectrum (IPmax) were the best features for discriminating

between freshly excised breast tissue. However, it was also suggested that the length of the spectral

curve feature (P), may be able to simultaneously discriminate between the four derived classes of

interest [61]. This four-class diagnostic scenario is addressed using the derived parametric methods,

considering these four features as potential class discriminators (I0, AREADA , IPmax, and P).

Mean, standard deviation, median, and range of the four features for each class are presented in

Table 7.1. P appears to have small overlap between all groups when compared to the other features,

indicating it may perform well as a classifier. IPMax and I0 have significant overlap between the

CAR group and at least one other feature (CON for IPMax and FAD+MAS+GLA for I0). AREADA

has substantial overlap between all classes. The methods developed in Chapter 3 require normality

of the feature to be used for classification, however the mean and median data indicates that some

of the features may be skewed. The Shapiro-Wilk test is used to test this assumption and performs

well compared to other goodness of fit tests [32]. The assumption of normality is met for IPmax
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only, so a Box-Cox transformation is used to transform the other three features to normality where

Featuretransformed =
Featureλ − 1

λ
(7.1)

This results in λ = 0.09 for AREADA and λ = −0.31 for both I0 and P, found using the

powerTransform function in the car package in R [24, 52, 60]. After the transformation, all classes

pass the test for normality except for connective tissue with a p-value of .014 and .047 in I0 and

P, respectively. As was demonstrated in Chapter 3, these slight deviations from normality are not

expected to have a large negative impact on the CI around BC, however the CIs around the optimal

thresholds may not perform well.

Prevalences are adjusted to account for the FAD+MAS+GLA class being the combination of

three classes, resulting in prevalences of: pFAD+MAS +GLA = 1
2 and pCAR = pCON = pADI = 1

6 .

All four features (I0, AREADA , IPmax, and P) are considered separately as potential features to

discriminate between the four classes (with equal cost given to all misclassification rates). For each

feature, BC4 and its 95% CI is determined using Equation 2.16 and the GCI presented in Section

3.3.3 where

P1| j = Φ

(
θ1 − µ j

σ j

)
(7.2)

P2| j = Φ

(
θ2 − µ j

σ j

)
− Φ

(
θ1 − µ j

σ j

)
(7.3)

P3| j = Φ

(
θ3 − µ j

σ j

)
− Φ

(
θ2 − µ j

σ j

)
(7.4)

P4| j = Φ

(
µ j − θ3

σ j

)
(7.5)

and Φ is the standard normal CDF [52]. The GCIs are chosen for this application over the delta

method CIs due to the sample sizes in each class.

Because the CAR class may be considered the most important to detect, a second cost structure

is assumed which gives greater cost for misclassifying a CAR subject as any of the other classes and

also a higher cost on the class specific misclassification of any subjects from the other three classes

as CAR. This results in a cost structure where Cost =

[ 0 9 4 4
6 0 6 6
4 9 0 4
4 9 4 0

]
, assuming an ordering of the class

means where µFAD+MAS +GLA < µCAR < µCON < µADI (the cost structure is adjusted appropriately

for features with a different ordering). Once again the BC4 value and associated 95% GCI for all
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four features are determined. The BC4 values and 95% CI for each feature and cost structure are

given in Table 7.1.

Table 7.1: Descriptive statistics for features (broken into four classes: FAD+MAS+GLA, CAR,
CON, ADI) to classify breast tissue and each features’ BC4 values with 95% generalized confidence
intervals.

Feature Mean Standard Deviation Median Range

P FAD+MAS+GLA 283.38 106.30 252.48 [124.98, 553.38]
CAR 479.97 93.19 477.55 [329.09, 656.77]
CON 1065.00 356.07 1121.19 [528.70, 1524.61]
ADI 2138.75 386.51 2068.05 [1475.37, 2896.52]

BC4 equal costs 0.65 (0.49, 0.91)
BC4 unequal costs 1.02 (0.75, 1.46)

IPMax FAD+MAS+GLA 27.20 10.22 26.86 [7.97, 49.33]
CAR 64.53 18.85 69.39 [35.60, 96.56]
CON 72.96 34.45 70.10 [23.98, 143.09]
ADI 194.60 106.56 164.63 [51.85, 436.10]

BC4 equal costs 0.89 (0.73, 1.16)
BC4 unequal costs 1.32 (1.08, 1.74)

I0 FAD+MAS+GLA 259.73 104.22 245 [103.00, 544.65]
CAR 394.23 87.04 389.87 [269.50, 551.88]
CON 1212.86 386.47 1328.17 [649.37, 1724.09]
ADI 2052.05 342.49 1974.56 [1600.00, 2800.00]

BC4 equal costs 0.77 (0.58, 1.04)
BC4 unequal costs 1.21 (0.90, 1.63)

AREADA FAD+MAS+GLA 10.25 6.60 9.19 [2.76, 33.60]
CAR 32.05 9.28 31.30 [15.94, 44.90]
CON 14.00 10.77 14.77 [1.60, 43.39]
ADI 50.78 33.93 44.59 [14.64, 164.07]

BC4 equal costs 1.31 (1.16, 1.52)
BC4 unequal costs 2.14 (1.99, 2.62)

Using the BC4 values and their 95% CIs, discriminatory ability of each feature is determined

(equal or unequal costs). All features perform better than chance. It is clear that P and IPmax are

performing better than AREADA for equal and unequal costs since the CIs around BC4 for AREADA

are higher than the other two. Under the carcinoma weighted cost structure the CIs for P, IPMax,
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and I0 overlap and therefore these features may be considered equally good. However, for both cost

structures considered, P has the lowest estimate for BC4 and it also has the lowest upper bound on

the 95% CI, indicating the lowest maximum potential BC4 value.

Choosing P to discriminate between all four classes with equal costs (with µFAD+MAS +GLA <

µCAR < µCON < µADI) , the optimal thresholds (θ∗1 < θ∗2 < θ∗3) and their 95% GCIs are θ∗1=

402.21 (375.13, 441.14), θ∗2= 643.20 (587.21, 717.27), and θ∗3=1540.50 (1387.497, 1665.80). The

contingency table resulting from applying this classifier at its optimal point to the data is presented

in Table 7.2. Choosing P to discriminate between all four classes with a higher cost on the

misclassification of carcinoma, the optimal thresholds and their 95% GCIs are θ∗1 = 380.53 (353.07,

409.69), θ∗2 = 662.83 (596.61, 740.75), and θ∗3 = 1540.50 (1397.89, 1675.78). The contingency

table resulting from applying this classifier to the data at its optimal point is also presented in Table

7.2. The two different cost structures result in different estimates for θ∗1 and θ∗2 , but not for θ∗3 ,

demonstrating the impact differing cost structures may have on determining the optimal thresholds.

Table 7.2: Contingency tables for classifying breast tissue using length of spectral curve (P).

Predicted Class True Class

FAD+MAS+GLA CAR CON ADI
Equal Costs FAD+MAS+GLA 0.90 0.24 0.00 0.00

CAR 0.10 0.71 0.21 0.00
CON 0.00 0.05 0.79 0.05
ADI 0.00 0.00 0.00 0.95

FAD+MAS+GLA CAR CON ADI
Unequal Costs FAD+MAS+GLA 0.80 0.14 0.00 0.00

CAR 0.20 0.86 0.29 0.00
CON 0.00 0.00 0.71 0.05
ADI 0.00 0.00 0.00 0.95

Using the thresholds which result from the cost structure which weights the misclassification

of carcinoma higher, the correct classification rate for carcinoma increases from 71% to 86%. This

results in 14% of CAR subjects being misclassified as FAD+MAS+GLA (also an abnormal state).

None of the carcinoma cases are being classified as either of the two normal classes (CON and
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ADI) when the weighted cost structure is used. In [61], linear discriminant analysis was used

for the classification of subgroups of the six classes. Using this method, more than one feature

may be considered at a time for discrimination. When discriminating only between two classes,

CAR and FAD+MAS+GLA, they found two features (AREADA and IPmax) resulted in the best

classifier. Using this linear discrimination they had approximately the same correct classification

rate for CAR (86.36%) as we observed. However, our diagnostic tests are simpler (depend on

one feature using simple cut-offs between classes) and simultaneously classifies between all four

classes. If distinctions between only CAR and FAD+MAS+GLA were of interest, higher correct

classification rates may potentially be achieved using other features. Using linear discriminant

analysis, the false negative rate may be altered by adjusting boundaries for a single class of interest,

however costs for all decisions can not be accounted for a priori. Finally, the resulting classification

rates for the connective tissue group are the worst, which may be a result of this group’s departure

from normality.

The CIs around BC reflect the uncertainty in each feature’s ability to classify due to the

variation of the data. Notably, as observed from the simulation results, the CI on BC is more

robust than the CIs on the optimal thresholds for transformed data in the Box-Cox family (as in

this application). Here, constructing a CI on BC allows the researcher to decide on the best feature

(or test). In this study, P was found to be the best single feature for classifying breast tissue.

Further study may be conducted in order to verify the optimal thresholds to implement this feature

in practice for diagnosis.
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7.2 Classifying Chronic Allograft Nephropathy

After kidney transplant (KT), chronic allograft nephropathy (CAN) is one of the prevalent

factors leading to renal transplant failure, yet its progression is still not well understood.

Biopsy is a means of determining if a patient has CAN, however it is of interest to determine

methods for detecting progression towards CAN after KT which are less invasive. Due to the

inflammatory response generated by tissue damage associated with CAN, it has been suggested

that proinflammatory cytokine markers, such as the transforming growth factor-β1 may provide

an early indication of potential allograft loss [48]. Mas et. al. conducted a study to evaluate

gene panel mRNAs in urine samples for their usefulness as a non-invasive tool for evaluating

graft function [37]. This study suggested that the biomarkers transforming growth factor-β1 (TGF-

β1), angiotensinogen (AGT), and epidermal growth factor receptor (EGFR) (all measurable mRNA

levels in urine) could be useful as early predictors of allograft function [37]. There were 32 normal

kidney function patients (NKF) , 18 normal kidney function with proturina patients (NKF+, a

progression towards CAN), and 14 CAN patients six months post transplant examined in their study.

Descriptive statistics of the three biomarkers within each diagnostic state are presented in Table 7.3

with a more detailed description of all the markers originally considered found in [37].

Table 7.3: Descriptive statistics of three features (broken into three classes: NKF, NKF+, CAN) to
classify kidney function.

Feature Class Mean Standard Deviation Median Range

AGT NKF 15.47 16.02 8.02 [1,64]
NKF+ 4.76 6.30 2.90 [0.11,24.25]
CAN 4.63 3.44 4.15 [0.05,9.85]

TGF − β1 NKF 1.56 1.22 1.37 [0.13,6.06]
NKF+ 32.75 128.85 1.04 [0.33,548.75]
NKF+† 2.39 4.58 0.93 [0.33,19.70]
CAN 5.31 5.06 3.26 [1.23,19.70]

EGFR NKF 15.41 15.34 9.71 [1,64]
NKF+ 7.12 12.51 4.01 [0.11,51.98]
CAN 4.23 3.27 3.65 [0.05,9.85]

†These values exclude the extreme observation where TGF-β1 = 548.74.
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Potential multi-class classifiers were evaluated in [57] using volume under the surface (VUS)

of the ROC manifold. The highest VUS (best classification performance) resulted from a classifier

which simultaneously utilized both the AGT and TGF-β1 biomarkers, splitting the two dimensional

parameter space into regions for classification using arrays. However, the mathematical complexity

of this classifier makes it hard to implement.

Instead, a simplified version of the classifier in [57] with practical rules using thresholds for

the observed values of AGT and TGF-β1 may be used. Further, comparisons between different

classifiers utilizing such rules, with varying levels of complexity are made. First, Classifier 1 is

a simpler classifier, utilizing single threshold values on the two biomarkers for TGF-β1 and AGT,

respectively (θ = (θ1, θ2)):

Classifier 1:

Assign patient i to

class 3 (CAN) if xTGF−β,i > θ1

class 2 (NKF+) if xTGF−β,i ≤ θ1 and xAGT,i < θ2

or class 1 (NKF) otherwise.

This classifier is plotted in Figure 7.1 (top) using the optimal threshold values which were found

to minimize the empirically estimated BC using a simple grid search. These threshold values

associated with the minimum BC (equal costs and prevalences are assumed for all misclassification

outcomes) are θ = (2.55, 3.65) . This classifier is represented with vertical and horizontal lines and

has the advantage of only requiring two threshold values. For example, a subject whose TGF-β1 is

2.4 and an has AGT of 3.1 would be classified with NKF+ and a subject whose TGF-β1 is greater

than 2.55, regardless of their AGT value, would be classified with CAN. Classifier 1 correctly

classified 26 of 32 patients as NKF, 9 of 18 patients as NKF+, and 11 of 14 patients as CAN and has

a corresponding B̂C = 0.90 (see Table 7.4 for the full contingency table of classification outcomes).
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Figure 7.1: Plot of AGT vs. TGF-β1 with three-class classification systems (Top: Classifier 1,

Bottom: Classifier 2) for classifying patients as NKF (N), NKF+ (�), or CAN (∗). These plots

exclude the extreme observation in TGF-β1, where (TGF-β1, AGT)=(548.74, 4.59), however this

point is included in the classification.
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A more complex variant of Classifier 1 is also proposed that allows for the horizontal and

vertical lines to have slope. This classifier, Classifier 2, considers non-rectangular regions in the

AGT and TGF-β1 plane and requires four thresholds (θ = (θ1, θ2, θ3, θ4)):

Classifier 2:

Assign patient i to

class 1 (NKF) if xAGT,i >
[
θ4 × xTGF−β1,i − θ4θ3

]
and xAGT,i >

[
θ2 × xTGF−β1,i + θ1

]
class 3 (CAN) if xAGT,i ≤

[
θ2 × xTGF−β1,i + θ1

]
or class 2 (NKF+) otherwise.

This classifier is plotted in Figure 7.1 (bottom) using the four optimal threshold values associated

with the minimum B̂C, θ = (2.925, 1.45, 1.0, 5.0) . Classifier 2 correctly classified 28 of 32 patients

as NKF, 8 of 18 patients of NKF+, and 13 of 14 patients as CAN with a corresponding B̂C = 0.75

(see Table 7.4 for the full contingency table of classification outcomes). Based on these point

estimates of BC, Classifier 2 is performing better than Classifier 1, demonstrating the potential

utility of non-rectangular regions in this instance.

Table 7.4: Contingency tables for classifying subjects into three groups with respect to chronic
allograft nephropathy.

Predicted Class True Class

NKF NKF+ CAN
Classifier 1 NKF 0.81 0.28 0.07
B̂C = 0.90 NKF+ 0.03 0.50 0.14

CAN 0.16 0.22 0.79

NKF NKF+ CAN
Classifier 2 NKF 0.88 0.22 0.00
B̂C = 0.76 NKF+ 0.06 0.44 0.07

CAN 0.06 0.33 0.93

This data consists of small sample sizes of the classes, non-normality of the biomarkers in

each class (which do not transform to normality), and the requirement to use two biomarkers

simultaneously in order to make the desired classifications. Therefore, the proposed fiducial

interval from Chapter 4 can be used to construct a CI around the optimal BC for both classifiers.
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Using the fiducial interval, a 95% CI for Classifier 1 is BC ∈ [0.56, 1.29] and for Classifier 2 is

BC ∈ [0.44, 1.13]. Both CIs demonstrate that these classifiers are performing better than chance

because they do not span BC = 1.5. Although Classifier 2 reflects better classification for the CAN

diagnostic state (13 instead of 11 patients correctly classified), the overlap of these two CIs indicates

that Classifier 2 may not perform better than Classifier 1 across all diagnostic states.

A nonparametric hypothesis test may be conducted to formally test whether the more complex

classifier (Classifier 2) is performing better than the simpler classifier (Classifier 1). This was

accomplished with the LRT developed in Section 6.3.2 for testing hypotheses on η . Based on the

simulation results in Section 6.4.2, the LRT is appropriate for this application because for sample

sizes of n j = 10 or more the LRT maintained a size less than α. For this application,

η = BCClassi f ier1 − BCClassi f ier2 (7.6)

and the hypothesis being tested is

H0 : η ≤ η0 vs. H1 : η > η0 (5.3)

Using the LRT, the p-value for this test is 0.51 (̂η = 0.15). The exact hypothesis test was shown with

simulations in Section 6.4.2 to have higher power than the LRT for tests on η . However, although

applying the exact test here might result in a slightly smaller p-value, the difference in p-values

would not be enough to change the decision of the test at a significance level of 0.05. Therefore,

the null hypothesis is not rejected and there is not enough evidence to conclude the more complex

classifier is performing better than the simpler classifier.

This application demonstrates the use of nonparametric inference methods on BC for a

classifier using thresholds for a pair of biomarkers. Future work on associating the inflammatory

response with diagnostic states leading to CAN, may utilize these methods to make comparisons

between combinations of alternate classifiers (e.g. random forests) and biomarkers to determine

that which best aids diagnosis of allograft function post transplant. This demonstrates an important

use of flexible inference methods for BC.
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VIII. Conclusions

Performance of classification systems at their optimal point is of great importance for

classification methods. The commonly employed Youden index allows for summarizing a

classification system’s performance at its optimal thresholds, as the sum of correct classification

rates. Bayes Cost, which minimizes misclassification rates instead, has been shown to be a more

flexible metric for characterizing performance of a classification system due to its ability to allow

for any costs and prevalence to be placed on all class specific misclassifications. In fact, due to the

flexibility of BC, the methods developed in this dissertation may also be used for inference on J.

Although estimating BC and the optimal thresholds is of interest, quantifying the uncertainty

in a classification system’s performance is also of great practical use, especially if the classification

system is not already determined, or if new or varying tests require comparison. Therefore, this work

has developed new CI and hypothesis test methods for BC under parametric and nonparametric

frameworks. CIs for k ≥ 3 classes were limited in the literature, and previous to this work,

hypothesis tests had not been developed. Under parametric scenarios, the generalized inference

methods were shown with simulation to outperform the inference methods which utilized the delta

method. For nonparametric settings, exact inference methods were derived which were developed

with the fiducial argument. These methods may require large computational time, and therefore a

likelihood ratio test was also developed which may be used as an approximate alternative to the

exact hypothesis test when sample sizes are large enough. The methods which have been proposed

are possible for any finite number of outcome classes.

BC can incorporate any cost structure on the correct and incorrect classification rates. However,

it is possible to pick cost structures that would result in no optimal solution for the classification

system [65]. Therefore, costs should be chosen with realistic concerns in mind. If costs reflect truth

and no solution exists for the classification system, then the costs must be adjusted if possible, or

more ideally, a better system found which can allow for the necessary cost structure.

Future work may consider more efficient methods for calculating the exact fiducial interval

bounds as well as computing exact p-values, therefore conserving computational time and making
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the implementation of the exact methods easier. Also, the GCI performed well for a classification

system with a single feature that is independently and normally distributed for each class. Therefore,

it may be of interest to consider a generalized approach for inference on BC when the feature used

for classification is not normal (ex. gamma, chi square, mixtures, etc.). Finally, this work has

assumed fixed prevalences on each class. However, it is possible that the prevalence of a class

is not known explicitly. Future work may consider inference on BC when the prevalence of each

class follows a known distribution to consider a possible range of prevalence values. Under this

framework, Bayesian methods may be employed to determine properties of Bayes Cost as well as

corresponding credible sets for Bayes Cost and the optimal thresholds.
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Appendix A: Mathematical Derivations and Support
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A.1 Asymptotic Distribution of Sample Mean and Variance

In order to show (Xn, S 2
n)

d
−→ mvn , some necessary theorems and definition are presented first.

Definition 8 (Converges in Probability).

A sequence of random variables, X1, X2, . . . , converges in probability to a random
variable X if for every ε > 0 , limn→∞ P(|Xn − X| ≥ ε) = 0 or, equivalently,
limn→∞ P(|Xn − X| < ε) = 1 [12, p. 232]

Theorem 9 (Central Limit Theorem (CLT)).

Let X1, X2, . . . be a sequence of iid random variables with EXi = µ and 0 < VarXi =

σ2 < ∞ . Define Xn = (1/n)
∑n

i=1 Xi . Let Gn(x) denote the cdf of
√

n(Xn − µ)/σ . Then,
for any x, −∞ < x < ∞ ,

lim
n→∞

Gn(x) =

∫ x

−∞

1
√

2π
e−y2/2dy

that is,
√

n(Xn − µ)/σ has a limiting standard normal distribution. [12, p. 238]

Theorem 10 (Slutsky’s Theorem).

If Xn → X in distribution and Yn → a , a constant, in probability, then
a. YnXn → aX in distribution
b. Xn + Yn → X + a in distribution. [12, pg. 239-240]

Theorem 11.

Let X1, X2, . . . , be iid f (x | θ) , let θ̂ denote the MLE of θ , and let τ(θ) be a continuous
function of θ . Under the regularity conditions [. . . ] on f (x | θ) and , hence, L(θ | x) ,

√
n[τ(̂θ) − τ(θ)]→ n[0, v(θ)]

where v(θ) is the Cramér-Rao Lower Bound. That is, τ(̂θ) is a consisten and
asymptotically efficient estimator of τ(θ) [12, pg. 472]

Regularity conditions are presented in Section A.5, and are assumed for the normal distribution.

From the CLT it is clear that Xn
d
−→ n[µ, σ2/n] . To see that the sample variance (S 2

n) also has a

limiting normal distribution first note from Theorem 11 that
√

n[σ̂2
n −σ

2]
d
−→ n[0, v(σ2)] , where σ̂2

is the Maximum Likelihood Estimator (MLE) of σ2 and

σ̂2
n =

1
n

n∑
i=1

(Xi − Xn)2 =
n − 1

n
S 2

n (A.1)

Also, it is clear that

lim
n→∞

P
(∣∣∣∣∣∣
√

n
n − 1

σ̂2
n − 0

∣∣∣∣∣∣ < ε
)

= 1 (A.2)
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which implies from Definition 8 that
√

n
n−1 σ̂

2
n

p
−→ 0 . Now consider,

√
n
(
S 2

n − σ
2
)

=
√

n
( n
n − 1

σ̂2
n − σ

2
)

=
√

n
(

n
n − 1

σ̂2
n −

1
n − 1

σ̂2
n − σ

2
)

+

√
n

n − 1
σ̂2

n

=
√

n
(
σ̂2

n − σ
2
)

+

√
n

n − 1
σ̂2

n (A.3)

Let Xn =
√

n
(
σ̂2

n − σ
2
)

and Yn =
√

n
n−1 σ̂

2
n , then from Slutsky’s Thm,

√
n
(
S 2

n − σ
2
)

= Xn + Yn
d
−→

n[0, v(σ2)] + 0 = n[0, v(σ2)] .

Finally, since Xn and S 2
n are indpendent ([12, p. 218]), their asymptotic joint distribution is

simply the product of their asymptotic normal marginals, which is the bivariate normal pdf with

correlation, ρ , of zero. Therefore, (Xn , S 2
n)

d
−→ mvn[(µ, σ2), (σ2/n, v(σ2))] .

A.2 Derivation of partial derivatives of three-class Bayes Cost with respect to all distribu-

tional parameters.

(
∂BC
∂µ1

)
=

∂

∂µ1


c2|1 p1 ×

(
Φ

(
θ2−µ1
σ1

)
− Φ

(
θ1−µ1
σ1

))
+ c3|1 p1 ×

(
Φ

(
µ1−θ2
σ1

))
+

c1|2 p2 ×
(
Φ

(
θ1−µ2
σ2

))
+ c3|2 p2 ×

(
Φ

(
µ2−θ2
σ2

))
+

c1|3 p3 ×
(
Φ

(
θ1−µ3
σ3

))
+ c2|3 p3 ×

(
Φ

(
θ2−µ3
σ3

)
− Φ

(
θ1−µ3
σ3

))


=


c2|1 p1 ×

∂
∂µ1

[
Φ

(
θ2−µ1
σ1

)]
− c2|1 p1 ×

∂
∂µ1

[
Φ

(
θ1−µ1
σ1

)]
+ c3|1 p1 ×

∂
∂µ1

[
Φ

(
µ1−θ2
σ1

)]
+

c1|2 p2 ×
∂
∂µ1

[
Φ

(
θ1−µ2
σ2

)]
+ c3|2 p2 ×

∂
∂µ1

[
Φ

(
µ2−θ2
σ2

)]
+

c1|3 p3 ×
∂
∂µ1

[
Φ

(
θ1−µ3
σ3

)]
+ c2|3 p3 ×

∂
∂µ1

[
Φ

(
θ2−µ3
σ3

)]
− c2|3 p3 ×

∂
∂µ1

[
Φ

(
θ1−µ3
σ3

)]


=



c2|1 p1 × φ
(
θ2−µ1
σ1

)
∂
∂µ1

[(
θ2−µ1
σ1

)]
− c2|1 p1 × φ

(
θ1−µ1
σ1

)
∂
∂µ1

[(
θ1−µ1
σ1

)]
+

c3|1 p1 × φ
(
µ1−θ2
σ1

)
∂
∂µ1

[(
µ1−θ2
σ1

)]
+ c1|2 p2 × φ

(
θ1−µ2
σ2

)
∂
∂µ1

[(
θ1−µ2
σ2

)]
+

c3|2 p2 × φ
(
µ2−θ2
σ2

)
∂
∂µ1

[(
µ2−θ2
σ2

)]
+ c1|3 p3 × φ

(
θ1−µ3
σ3

)
∂
∂µ1

[(
θ1−µ3
σ3

)]
+

c2|3 p3 × φ
(
θ2−µ3
σ3

)
∂
∂µ1

[(
θ2−µ3
σ3

)]
− c2|3 p3 × φ

(
θ1−µ3
σ3

)
∂
∂µ1

[(
θ1−µ3
σ3

)]



=



c2|1 p1 × φ
(
θ2−µ1
σ1

) [
∂θ2
∂µ1
σ−1

1 − σ
−1
1

]
− c2|1 p1 × φ

(
θ1−µ1
σ1

) [
∂θ1
∂µ1
σ−1

1 − σ
−1
1

]
+

c3|1 p1 × φ
(
µ1−θ2
σ1

) [
σ−1

1 −
∂θ2
∂µ1
σ−1

1

]
+ c1|2 p2 × φ

(
θ1−µ2
σ2

) [
∂θ1
∂µ1
σ−1

2

]
+

c3|2 p2 × φ
(
µ2−θ2
σ2

) [
−
∂θ2
∂µ1
σ−1

2

]
+ c1|3 p3 × φ

(
θ1−µ3
σ3

) [
∂θ1
∂µ1
σ−1

3

]
+

c2|3 p3 × φ
(
θ2−µ3
σ3

) [
∂θ2
∂µ1
σ−1

3

]
− c2|3 p3 × φ

(
θ1−µ3
σ3

) [
∂θ1
∂µ1
σ−1

3

]


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Pulling out the standard deviations and using φ
(
θ2−µ1
σ1

)
= φ

(
µ1−θ2
σ1

)
results in

(
∂BC
∂µ1

)
=



σ−1
1

 c2|1 p1φ
(
θ2−µ1
σ1

) [
∂θ2
∂µ1
− 1

]
− c2|1 p1φ

(
θ1−µ1
σ1

) [
∂θ1
∂µ1
− 1

]
+

c3|1 p1φ
(
µ1−θ2
σ1

) [
1 − ∂θ2

∂µ1

]
 +

σ−1
2

[
c1|2 p2φ

(
θ1−µ2
σ2

) [
∂θ1
∂µ1

]
+ c3|2 p2φ

(
µ2−θ2
σ2

) [
−
∂θ2
∂µ1

]]
+

σ−1
3

[
c1|3 p3φ

(
θ1−µ3
σ3

) [
∂θ1
∂µ1

]
+ c2|3 p3φ

(
θ2−µ3
σ3

) [
∂θ2
∂µ1

]
− c2|3 p3φ

(
θ1−µ3
σ3

) [
∂θ1
∂µ1

]]



=


σ−1

1

[[
∂θ2
∂µ1
− 1

] (
c2|1 p1φ

(
θ2−µ1
σ1

)
− c3|1 p1φ

(
µ1−θ2
σ1

))
− c2|1 p1φ

(
θ1−µ1
σ1

) [
∂θ1
∂µ1
− 1

]]
+

σ−1
2

[
c1|2 p2φ

(
θ1−µ2
σ2

) [
∂θ1
∂µ1

]
+ c3|2 p2φ

(
µ2−θ2
σ2

) [
−
∂θ2
∂µ1

]]
+

σ−1
3

[[
∂θ1
∂µ1

] (
c1|3 p3φ

(
θ1−µ3
σ3

)
− c2|3 p3φ

(
θ1−µ3
σ3

))
+ c2|3 p3φ

(
θ2−µ3
σ3

) [
∂θ2
∂µ1

]]


=


σ−1

1

[[
∂θ2
∂µ1
− 1

]
φ
(
θ2−µ1
σ1

) (
c2|1 p1 − c3|1 p1

)
− c2|1 p1φ

(
θ1−µ1
σ1

) [
∂θ1
∂µ1
− 1

]]
+

σ−1
2

[
c1|2 p2φ

(
θ1−µ2
σ2

) [
∂θ1
∂µ1

]
+ c3|2 p2φ

(
µ2−θ2
σ2

) [
−
∂θ2
∂µ1

]]
+

σ−1
3

[[
∂θ1
∂µ1

]
φ
(
θ1−µ3
σ3

) (
c1|3 p3 − c2|3 p3

)
+ c2|3 p3φ

(
θ2−µ3
σ3

) [
∂θ2
∂µ1

]]


(
∂BC
∂µ2

)
=

∂

∂µ2


c2|1 p1 ×

(
Φ

(
θ2−µ1
σ1

)
− Φ

(
θ1−µ1
σ1

))
+ c3|1 p1 ×

(
Φ

(
µ1−θ2
σ1

))
+

c1|2 p2 ×
(
Φ

(
θ1−µ2
σ2

))
+ c3|2 p2 ×

(
Φ

(
µ2−θ2
σ2

))
+

c1|3 p3 ×
(
Φ

(
θ1−µ3
σ3

))
+ c2|3 p3 ×

(
Φ

(
θ2−µ3
σ3

)
− Φ

(
θ1−µ3
σ3

))


=


c2|1 p1 ×

∂
∂µ2

[
Φ

(
θ2−µ1
σ1

)]
− c2|1 p1 ×

∂
∂µ2

[
Φ

(
θ1−µ1
σ1

)]
+ c3|1 p1 ×

∂
∂µ2

[
Φ

(
µ1−θ2
σ1

)]
+

c1|2 p2 ×
∂
∂µ2

[
Φ

(
θ1−µ2
σ2

)]
+ c3|2 p2 ×

∂
∂µ2

[
Φ

(
µ2−θ2
σ2

)]
+

c1|3 p3 ×
∂
∂µ2

[
Φ

(
θ1−µ3
σ3

)]
+ c2|3 p3 ×

∂
∂µ2

[
Φ

(
θ2−µ3
σ3

)]
− c2|3 p3 ×

∂
∂µ2

[
Φ

(
θ1−µ3
σ3

)]


=



c2|1 p1 × φ
(
θ2−µ1
σ1

)
∂
∂µ2

[(
θ2−µ1
σ1

)]
− c2|1 p1 × φ

(
θ1−µ1
σ1

)
∂
∂µ2

[(
θ1−µ1
σ1

)]
+

c3|1 p1 × φ
(
µ1−θ2
σ1

)
∂
∂µ2

[(
µ1−θ2
σ1

)]
+ c1|2 p2 × φ

(
θ1−µ2
σ2

)
∂
∂µ2

[(
θ1−µ2
σ2

)]
+

c3|2 p2 × φ
(
µ2−θ2
σ2

)
∂
∂µ2

[(
µ2−θ2
σ2

)]
+ c1|3 p3 × φ

(
θ1−µ3
σ3

)
∂
∂µ2

[(
θ1−µ3
σ3

)]
+

c2|3 p3 × φ
(
θ2−µ3
σ3

)
∂
∂µ2

[(
θ2−µ3
σ3

)]
− c2|3 p3 × φ

(
θ1−µ3
σ3

)
∂
∂µ2

[(
θ1−µ3
σ3

)]



=



c2|1 p1 × φ
(
θ2−µ1
σ1

) [
∂θ2
∂µ2
σ−1

1

]
− c2|1 p1 × φ

(
θ1−µ1
σ1

) [
∂θ1
∂µ2
σ−1

1

]
+

c3|1 p1 × φ
(
µ1−θ2
σ1

) [
−
∂θ2
∂µ2
σ−1

1

]
+ c1|2 p2 × φ

(
θ1−µ2
σ2

) [
∂θ1
∂µ2
σ−1

2 − σ
−1
2

]
+

c3|2 p2 × φ
(
µ2−θ2
σ2

) [
σ−1

2 −
∂θ2
∂µ2
σ−1

2

]
+ c1|3 p3 × φ

(
θ1−µ3
σ3

) [
∂θ1
∂µ2
σ−1

3

]
+

c2|3 p3 × φ
(
θ2−µ3
σ3

) [
∂θ2
∂µ2
σ−1

3

]
− c2|3 p3 × φ

(
θ1−µ3
σ3

) [
∂θ1
∂µ2
σ−1

3

]


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Pulling out the standard deviations and using φ
(
θ2−µ1
σ1

)
= φ

(
µ1−θ2
σ1

)
results in

(
∂BC
∂µ2

)
=


σ−1

1

[
c2|1 p1φ

(
θ2−µ1
σ1

) [
∂θ2
∂µ2

]
− c2|1 p1φ

(
θ1−µ1
σ1

) [
∂θ1
∂µ2

]
+ c3|1 p1φ

(
µ1−θ2
σ1

) [
−
∂θ2
∂µ2

]]
+

σ−1
2

[
c1|2 p2φ

(
θ1−µ2
σ2

) [
∂θ1
∂µ2
− 1

]
+ c3|2 p2φ

(
µ2−θ2
σ2

) [
1 − ∂θ2

∂µ2

]]
+

σ−1
3

[
c1|3 p3φ

(
θ1−µ3
σ3

) [
∂θ1
∂µ2

]
+ c2|3 p3φ

(
θ2−µ3
σ3

) [
∂θ2
∂µ2

]
− c2|3 p3φ

(
θ1−µ3
σ3

) [
∂θ1
∂µ2

]]


=


σ−1

1

[[
∂θ2
∂µ2

] (
c2|1 p1φ

(
θ2−µ1
σ1

)
− c3|1 p1φ

(
µ1−θ2
σ1

))
− c2|1 p1φ

(
θ1−µ1
σ1

) [
∂θ1
∂µ2

]]
+

σ−1
2

[
c1|2 p2φ

(
θ1−µ2
σ2

) [
∂θ1
∂µ2
− 1

]
+ c3|2 p2φ

(
µ2−θ2
σ2

) [
1 − ∂θ2

∂µ2

]]
+

σ−1
3

[[
∂θ1
∂µ2

] (
c1|3 p3φ

(
θ1−µ3
σ3

)
− c2|3 p3φ

(
θ1−µ3
σ3

))
+ c2|3 p3φ

(
θ2−µ3
σ3

) [
∂θ2
∂µ2

]]


=


σ−1

1

[[
∂θ2
∂µ2

]
φ
(
θ2−µ1
σ1

) (
c2|1 p1 − c3|1 p1

)
− c2|1 p1φ

(
θ1−µ1
σ1

) [
∂θ1
∂µ2

]]
+

σ−1
2

[
c1|2 p2φ

(
θ1−µ2
σ2

) [
∂θ1
∂µ2
− 1

]
+ c3|2 p2φ

(
µ2−θ2
σ2

) [
1 − ∂θ2

∂µ2

]]
+

σ−1
3

[[
∂θ1
∂µ2

]
φ
(
θ1−µ3
σ3

) (
c1|3 p3 − c2|3 p3

)
+ c2|3 p3φ

(
θ2−µ3
σ3

) [
∂θ2
∂µ2

]]

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(
∂BC
∂µ3

)
=

∂

∂µ3


c2|1 p1 ×

(
Φ

(
θ2−µ1
σ1

)
− Φ

(
θ1−µ1
σ1

))
+ c3|1 p1 ×

(
Φ

(
µ1−θ2
σ1

))
+

c1|2 p2 ×
(
Φ

(
θ1−µ2
σ2

))
+ c3|2 p2 ×

(
Φ

(
µ2−θ2
σ2

))
+

c1|3 p3 ×
(
Φ

(
θ1−µ3
σ3

))
+ c2|3 p3 ×

(
Φ

(
θ2−µ3
σ3

)
− Φ

(
θ1−µ3
σ3

))


=


c2|1 p1 ×

∂
∂µ3

[
Φ

(
θ2−µ1
σ1

)]
− c2|1 p1 ×

∂
∂µ3

[
Φ

(
θ1−µ1
σ1

)]
+ c3|1 p1 ×

∂
∂µ3

[
Φ

(
µ1−θ2
σ1

)]
+

c1|2 p2 ×
∂
∂µ3

[
Φ

(
θ1−µ2
σ2

)]
+ c3|2 p2 ×

∂
∂µ3

[
Φ

(
µ2−θ2
σ2

)]
+

c1|3 p3 ×
∂
∂µ3

[
Φ

(
θ1−µ3
σ3

)]
+ c2|3 p3 ×

∂
∂µ3

[
Φ

(
θ2−µ3
σ3

)]
− c2|3 p3 ×

∂
∂µ3

[
Φ

(
θ1−µ3
σ3

)]


=



c2|1 p1 × φ
(
θ2−µ1
σ1

)
∂
∂µ3

[(
θ2−µ1
σ1

)]
− c2|1 p1 × φ

(
θ1−µ1
σ1

)
∂
∂µ3

[(
θ1−µ1
σ1

)]
+

c3|1 p1 × φ
(
µ1−θ2
σ1

)
∂
∂µ3

[(
µ1−θ2
σ1

)]
+ c1|2 p2 × φ

(
θ1−µ2
σ2

)
∂
∂µ3

[(
θ1−µ2
σ2

)]
+

c3|2 p2 × φ
(
µ2−θ2
σ2

)
∂
∂µ3

[(
µ2−θ2
σ2

)]
+ c1|3 p3 × φ

(
θ1−µ3
σ3

)
∂
∂µ3

[(
θ1−µ3
σ3

)]
+

c2|3 p3 × φ
(
θ2−µ3
σ3

)
∂
∂µ3

[(
θ2−µ3
σ3

)]
− c2|3 p3 × φ

(
θ1−µ3
σ3

)
∂
∂µ3

[(
θ1−µ3
σ3

)]



=



c2|1 p1 × φ
(
θ2−µ1
σ1

) [
∂θ2
∂µ3
σ−1

1

]
−

c2|1 p1 × φ
(
θ1−µ1
σ1

) [
∂θ1
∂µ3
σ−1

1

]
+

c3|1 p1 × φ
(
µ1−θ2
σ1

) [
−
∂θ2
∂µ3
σ−1

1

]
+

c1|2 p2 × φ
(
θ1−µ2
σ2

) [
∂θ1
∂µ3
σ−1

2

]
+

c3|2 p2 × φ
(
µ2−θ2
σ2

) [
−
∂θ2
∂µ3
σ−1

2

]
+

c1|3 p3 × φ
(
θ1−µ3
σ3

) [
∂θ1
∂µ3
σ−1

3 − σ
−1
3

]
+

c2|3 p3 × φ
(
θ2−µ3
σ3

) [
∂θ2
∂µ3
σ−1

3 − σ
−1
3

]
−

c2|3 p3 × φ
(
θ1−µ3
σ3

) [
∂θ1
∂µ3
σ−1

3 − σ
−1
3

]



=


σ−1

1

[
c2|1 p1φ

(
θ2−µ1
σ1

) [
∂θ2
∂µ3

]
− c2|1 p1φ

(
θ1−µ1
σ1

) [
∂θ1
∂µ3

]
+ c3|1 p1φ

(
µ1−θ2
σ1

) [
−
∂θ2
∂µ3

]]
+

σ−1
2

[
c1|2 p2φ

(
θ1−µ2
σ2

) [
∂θ1
∂µ3

]
+ c3|2 p2φ

(
µ2−θ2
σ2

) [
−
∂θ2
∂µ3

]]
+

σ−1
3

[
c1|3 p3φ

(
θ1−µ3
σ3

) [
∂θ1
∂µ3
− 1

]
+ c2|3 p3φ

(
θ2−µ3
σ3

) [
∂θ2
∂µ3
− 1

]
− c2|3 p3φ

(
θ1−µ3
σ3

) [
∂θ1
∂µ3
− 1

]]


=


σ−1

1

[[
∂θ2
∂µ3

] (
c2|1 p1φ

(
θ2−µ1
σ1

)
− c3|1 p1φ

(
µ1−θ2
σ1

))
− c2|1 p1φ

(
θ1−µ1
σ1

) [
∂θ1
∂µ3

]]
+

σ−1
2

[
c1|2 p2φ

(
θ1−µ2
σ2

) [
∂θ1
∂µ3

]
+ c3|2 p2φ

(
µ2−θ2
σ2

) [
−
∂θ2
∂µ3

]]
+

σ−1
3

[[
∂θ1
∂µ3
− 1

] (
c1|3 p3φ

(
θ1−µ3
σ3

)
− c2|3 p3φ

(
θ1−µ3
σ3

))
+ c2|3 p3φ

(
θ2−µ3
σ3

) [
∂θ2
∂µ3
− 1

]]


=


σ−1

1

[[
∂θ2
∂µ3

]
φ
(
θ2−µ1
σ1

) (
c2|1 p1 − c3|1 p1

)
− c2|1 p1φ

(
θ1−µ1
σ1

) [
∂θ1
∂µ3

]]
+

σ−1
2

[
c1|2 p2φ

(
θ1−µ2
σ2

) [
∂θ1
∂µ3

]
+ c3|2 p2φ

(
µ2−θ2
σ2

) [
−
∂θ2
∂µ3

]]
+

σ−1
3

[[
∂θ1
∂µ3
− 1

]
φ
(
θ1−µ3
σ3

) (
c1|3 p3 − c2|3 p3

)
+ c2|3 p3φ

(
θ2−µ3
σ3

) [
∂θ2
∂µ3
− 1

]]

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(
∂BC
∂σ1

)
=

∂

∂σ1


c2|1 p1 ×

(
Φ

(
θ2−µ1
σ1

)
− Φ

(
θ1−µ1
σ1

))
+ c3|1 p1 ×

(
Φ

(
µ1−θ2
σ1

))
+

c1|2 p2 ×
(
Φ

(
θ1−µ2
σ2

))
+ c3|2 p2 ×

(
Φ

(
µ2−θ2
σ2

))
+

c1|3 p3 ×
(
Φ

(
θ1−µ3
σ3

))
+ c2|3 p3 ×

(
Φ

(
θ2−µ3
σ3

)
− Φ

(
θ1−µ3
σ3

))


=


c2|1 p1 ×

∂
∂σ1

[
Φ

(
θ2−µ1
σ1

)]
− c2|1 p1 ×

∂
∂σ1

[
Φ

(
θ1−µ1
σ1

)]
+ c3|1 p1 ×

∂
∂σ1

[
Φ

(
µ1−θ2
σ1

)]
+

c1|2 p2 ×
∂
∂σ1

[
Φ

(
θ1−µ2
σ2

)]
+ c3|2 p2 ×

∂
∂σ1

[
Φ

(
µ2−θ2
σ2

)]
+

c1|3 p3 ×
∂
∂σ1

[
Φ

(
θ1−µ3
σ3

)]
+ c2|3 p3 ×

∂
∂σ1

[
Φ

(
θ2−µ3
σ3

)]
− c2|3 p3 ×

∂
∂σ1

[
Φ

(
θ1−µ3
σ3

)]


=



c2|1 p1 × φ
(
θ2−µ1
σ1

)
∂
∂σ1

[(
θ2−µ1
σ1

)]
− c2|1 p1 × φ

(
θ1−µ1
σ1

)
∂
∂σ1

[(
θ1−µ1
σ1

)]
+

c3|1 p1 × φ
(
µ1−θ2
σ1

)
∂
∂σ1

[(
µ1−θ2
σ1

)]
+ c1|2 p2 × φ

(
θ1−µ2
σ2

)
∂
∂σ1

[(
θ1−µ2
σ2

)]
+

c3|2 p2 × φ
(
µ2−θ2
σ2

)
∂
∂σ1

[(
µ2−θ2
σ2

)]
+ c1|3 p3 × φ

(
θ1−µ3
σ3

)
∂
∂σ1

[(
θ1−µ3
σ3

)]
+

c2|3 p3 × φ
(
θ2−µ3
σ3

)
∂
∂σ1

[(
θ2−µ3
σ3

)]
− c2|3 p3 × φ

(
θ1−µ3
σ3

)
∂
∂σ1

[(
θ1−µ3
σ3

)]


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(
∂BC
∂σ1

)
=



c2|1 p1 × φ
(
θ2−µ1
σ1

) [
1
σ1

∂
∂σ1

(θ2 − µ1) + (θ2 − µ1) ∂
∂σ1

( 1
σ1

)
]
−

c2|1 p1 × φ
(
θ1−µ1
σ1

) [
1
σ1

∂
∂σ1

(θ1 − µ1) + (θ1 − µ1) ∂
∂σ1

( 1
σ1

)
]
+

c3|1 p1 × φ
(
µ1−θ2
σ1

) [
1
σ1

∂
∂σ1

(µ1 − θ2) + (µ1 − θ2) ∂
∂σ1

1
σ1

]
+

c1|2 p2 × φ
(
θ1−µ2
σ2

) [
∂θ1
∂σ1

σ−1
2

]
+

c3|2 p2 × φ
(
µ2−θ2
σ2

) [
−
∂θ2
∂σ1

σ−1
2

]
+

c1|3 p3 × φ
(
θ1−µ3
σ3

) [
∂θ1
∂σ1

σ−1
3

]
+

c2|3 p3 × φ
(
θ2−µ3
σ3

) [
∂θ2
∂σ1

σ−1
3

]
−

c2|3 p3 × φ
(
θ1−µ3
σ3

) [
∂θ1
∂σ1

σ−1
3

]



=



c2|1 p1 × φ
(
θ2−µ1
σ1

) [
σ−1

1
∂θ2
∂σ1
− (θ2 − µ1)σ−2

1

]
−

c2|1 p1 × φ
(
θ1−µ1
σ1

) [
1
σ1

∂θ1
∂σ1
− (θ1 − µ1)σ−2

1

]
+

c3|1 p1 × φ
(
µ1−θ2
σ1

) [
1
σ1

−∂θ2
∂σ1
− (µ1 − θ2)σ−2

1

]
+

c1|2 p2 × φ
(
θ1−µ2
σ2

) [
∂θ1
∂σ1

σ−1
2

]
+

c3|2 p2 × φ
(
µ2−θ2
σ2

) [
−
∂θ2
∂σ1

σ−1
2

]
+

c1|3 p3 × φ
(
θ1−µ3
σ3

) [
∂θ1
∂σ1

σ−1
3

]
+

c2|3 p3 × φ
(
θ2−µ3
σ3

) [
∂θ2
∂σ1

σ−1
3

]
−

c2|3 p3 × φ
(
θ1−µ3
σ3

) [
∂θ1
∂σ1

σ−1
3

]



=



σ−1
1 c2|1 p1 × φ

(
θ2−µ1
σ1

) [
∂θ2
∂σ1
− ( θ2−µ1

σ1
)
]
−

σ−1
1 c2|1 p1 × φ

(
θ1−µ1
σ1

) [
∂θ1
∂σ1
− ( θ1−µ1

σ1
)
]
+

σ−1
1 c3|1 p1 × φ

(
µ1−θ2
σ1

) [
−∂θ2
∂σ1
− (µ1−θ2

σ1
)
]
+

σ−1
2 c1|2 p2 × φ

(
θ1−µ2
σ2

) [
∂θ1
∂σ1

]
+

σ−1
2 c3|2 p2 × φ

(
µ2−θ2
σ2

) [
−
∂θ2
∂σ1

]
+

σ−1
3 c1|3 p3 × φ

(
θ1−µ3
σ3

) [
∂θ1
∂σ1

]
+

σ−1
3 c2|3 p3 × φ

(
θ2−µ3
σ3

) [
∂θ2
∂σ1

]
−

σ−1
3 c2|3 p3 × φ

(
θ1−µ3
σ3

) [
∂θ1
∂σ1

]


and continuing to simplify:
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(
∂BC
∂σ1

)
=



σ−1
1 c2|1 p1 × φ

(
θ2−µ1
σ1

) [
∂θ2
∂σ1
− ( θ2−µ1

σ1
)
]
−

σ−1
1 c2|1 p1 × φ

(
θ1−µ1
σ1

) [
∂θ1
∂σ1
− ( θ1−µ1

σ1
)
]
+

σ−1
1 c3|1 p1 × φ

(
µ1−θ2
σ1

) [
−∂θ2
∂σ1
− (µ1−θ2

σ1
)
]
+

σ−1
2 c1|2 p2 × φ

(
θ1−µ2
σ2

) [
∂θ1
∂σ1

]
+

σ−1
2 c3|2 p2 × φ

(
µ2−θ2
σ2

) [
−
∂θ2
∂σ1

]
+

σ−1
3 c1|3 p3 × φ

(
θ1−µ3
σ3

) [
∂θ1
∂σ1

]
+

σ−1
3 c2|3 p3 × φ

(
θ2−µ3
σ3

) [
∂θ2
∂σ1

]
−

σ−1
3 c2|3 p3 × φ

(
θ1−µ3
σ3

) [
∂θ1
∂σ1

]



=



σ−1
1

 c2|1 p1φ
(
θ2−µ1
σ1

) [
∂θ2
∂σ1
− ( θ2−µ1

σ1
)
]
− c2|1 p1φ

(
θ1−µ1
σ1

) [
∂θ1
∂σ1
− ( θ1−µ1

σ1
)
]
+

c3|1 p1φ
(
µ1−θ2
σ1

) [
−∂θ2
∂σ1
− (µ1−θ2

σ1
)
]

 +

σ−1
2

[
c1|2 p2φ

(
θ1−µ2
σ2

) [
∂θ1
∂σ1

]
+ c3|2 p2φ

(
µ2−θ2
σ2

) [
−
∂θ2
∂σ1

]]
+

σ−1
3

[
c1|3 p3φ

(
θ1−µ3
σ3

) [
∂θ1
∂σ1

]
+ c2|3 p3φ

(
θ2−µ3
σ3

) [
∂θ2
∂σ1

]
− c2|3 p3φ

(
θ1−µ3
σ3

) [
∂θ1
∂σ1

]]



=


σ−1

1

[
φ
(
θ2−µ1
σ1

) (
c2|1 p1 − c3|1 p1

) [ ∂θ2
∂σ1
− ( θ2−µ1

σ1
)
]
− c2|1 p1φ

(
θ1−µ1
σ1

) [
∂θ1
∂σ1
− ( θ1−µ1

σ1
)
]]

+

σ−1
2

[
c1|2 p2φ

(
θ1−µ2
σ2

) [
∂θ1
∂σ1

]
− c3|2 p2φ

(
µ2−θ2
σ2

) [
∂θ2
∂σ1

]]
+

σ−1
3

[
φ
(
θ1−µ3
σ3

) [
∂θ1
∂σ1

] (
c1|3 p3 − c2|3 p3

)
+ c2|3 p3φ

(
θ2−µ3
σ3

) [
∂θ2
∂σ1

]]

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(
∂BC
∂σ2

)
=

∂

∂σ2


c2|1 p1 ×

(
Φ

(
θ2−µ1
σ1

)
− Φ

(
θ1−µ1
σ1

))
+ c3|1 p1 ×

(
Φ

(
µ1−θ2
σ1

))
+

c1|2 p2 ×
(
Φ

(
θ1−µ2
σ2

))
+ c3|2 p2 ×

(
Φ

(
µ2−θ2
σ2

))
+

c1|3 p3 ×
(
Φ

(
θ1−µ3
σ3

))
+ c2|3 p3 ×

(
Φ

(
θ2−µ3
σ3

)
− Φ

(
θ1−µ3
σ3

))


=


c2|1 p1 ×

∂
∂σ2

[
Φ

(
θ2−µ1
σ1

)]
− c2|1 p1 ×

∂
∂σ2

[
Φ

(
θ1−µ1
σ1

)]
+ c3|1 p1 ×

∂
∂σ2

[
Φ

(
µ1−θ2
σ1

)]
+

c1|2 p2 ×
∂
∂σ2

[
Φ

(
θ1−µ2
σ2

)]
+ c3|2 p2 ×

∂
∂σ2

[
Φ

(
µ2−θ2
σ2

)]
+

c1|3 p3 ×
∂
∂σ2

[
Φ

(
θ1−µ3
σ3

)]
+ c2|3 p3 ×

∂
∂σ2

[
Φ

(
θ2−µ3
σ3

)]
− c2|3 p3 ×

∂
∂σ2

[
Φ

(
θ1−µ3
σ3

)]


=



c2|1 p1 × φ
(
θ2−µ1
σ1

)
∂
∂σ2

[(
θ2−µ1
σ1

)]
− c2|1 p1 × φ

(
θ1−µ1
σ1

)
∂
∂σ2

[(
θ1−µ1
σ1

)]
+

c3|1 p1 × φ
(
µ1−θ2
σ1

)
∂
∂σ2

[(
µ1−θ2
σ1

)]
+ c1|2 p2 × φ

(
θ1−µ2
σ2

)
∂
∂σ2

[(
θ1−µ2
σ2

)]
+

c3|2 p2 × φ
(
µ2−θ2
σ2

)
∂
∂σ2

[(
µ2−θ2
σ2

)]
+ c1|3 p3 × φ

(
θ1−µ3
σ3

)
∂
∂σ2

[(
θ1−µ3
σ3

)]
+

c2|3 p3 × φ
(
θ2−µ3
σ3

)
∂
∂σ2

[(
θ2−µ3
σ3

)]
− c2|3 p3 × φ

(
θ1−µ3
σ3

)
∂
∂σ2

[(
θ1−µ3
σ3

)]



=



c2|1 p1 × φ
(
θ2−µ1
σ1

) [
∂θ2
∂σ2

σ−1
1

]
−

c2|1 p1 × φ
(
θ1−µ1
σ1

) [
∂θ1
∂σ2

σ−1
1

]
+

c3|1 p1 × φ
(
µ1−θ2
σ1

) [
−
∂θ2
∂σ2

σ−1
1

]
+

c1|2 p2 × φ
(
θ1−µ2
σ2

) [
1
σ2

∂
∂σ2

(θ1 − µ2) + (θ1 − µ2) ∂
∂σ2

(
1
σ2

)]
+

c3|2 p2 × φ
(
µ2−θ2
σ2

) [
1
σ2

∂
∂σ2

(µ2 − θ2) + (µ2 − θ2) ∂
∂σ2

(
1
σ2

)]
+

c1|3 p3 × φ
(
θ1−µ3
σ3

) [
∂θ1
∂σ2

σ−1
3

]
+

c2|3 p3 × φ
(
θ2−µ3
σ3

) [
∂θ2
∂σ2

σ−1
3

]
−

c2|3 p3 × φ
(
θ1−µ3
σ3

) [
∂θ1
∂σ2

σ−1
3

]



=



c2|1 p1 × φ
(
θ2−µ1
σ1

) [
∂θ2
∂σ2

σ−1
1

]
−

c2|1 p1 × φ
(
θ1−µ1
σ1

) [
∂θ1
∂σ2

σ−1
1

]
+

c3|1 p1 × φ
(
µ1−θ2
σ1

) [
−
∂θ2
∂σ2

σ−1
1

]
+

c1|2 p2 × φ
(
θ1−µ2
σ2

) [
σ−1

2
∂θ1
∂σ2
− (θ1 − µ2)σ−2

2

]
+

c3|2 p2 × φ
(
µ2−θ2
σ2

) [
σ−1

2
−∂θ2
∂σ2
− (µ2 − θ2)σ−2

2

]
+

c1|3 p3 × φ
(
θ1−µ3
σ3

) [
∂θ1
∂σ2

σ−1
3

]
+

c2|3 p3 × φ
(
θ2−µ3
σ3

) [
∂θ2
∂σ2

σ−1
3

]
−

c2|3 p3 × φ
(
θ1−µ3
σ3

) [
∂θ1
∂σ2

σ−1
3

]


and continuing to simplify:

144



(
∂BC
∂σ2

)
=



σ−1
1 c2|1 p1 × φ

(
θ2−µ1
σ1

) [
∂θ2
∂σ2

]
−

σ−1
1 c2|1 p1 × φ

(
θ1−µ1
σ1

) [
∂θ1
∂σ2

]
+

σ−1
1 c3|1 p1 × φ

(
µ1−θ2
σ1

) [
−
∂θ2
∂σ2

]
+

σ−1
2 c1|2 p2 × φ

(
θ1−µ2
σ2

) [
∂θ1
∂σ2
−

(
θ1−µ2
σ2

)]
+

σ−1
2 c3|2 p2 × φ

(
µ2−θ2
σ2

) [
−∂θ2
∂σ2
−

(
µ2−θ2
σ2

)]
+

σ−1
3 c1|3 p3 × φ

(
θ1−µ3
σ3

) [
∂θ1
∂σ2

]
+

σ−1
3 c2|3 p3 × φ

(
θ2−µ3
σ3

) [
∂θ2
∂σ2

]
−

σ−1
3 c2|3 p3 × φ

(
θ1−µ3
σ3

) [
∂θ1
∂σ2

]



=



σ−1
1 c2|1 p1 × φ

(
θ2−µ1
σ1

) [
∂θ2
∂σ2

]
−

σ−1
1 c2|1 p1 × φ

(
θ1−µ1
σ1

) [
∂θ1
∂σ2

]
+

σ−1
1 c3|1 p1 × φ

(
µ1−θ2
σ1

) [
−
∂θ2
∂σ2

]
+

σ−1
2 c1|2 p2 × φ

(
θ1−µ2
σ2

) [
∂θ1
∂σ2
−

(
θ1−µ2
σ2

)]
+

σ−1
2 c3|2 p2 × φ

(
µ2−θ2
σ2

) [
−∂θ2
∂σ2
−

(
µ2−θ2
σ2

)]
+

σ−1
3 c1|3 p3 × φ

(
θ1−µ3
σ3

) [
∂θ1
∂σ2

]
+

σ−1
3 c2|3 p3 × φ

(
θ2−µ3
σ3

) [
∂θ2
∂σ2

]
−

σ−1
3 c2|3 p3 × φ

(
θ1−µ3
σ3

) [
∂θ1
∂σ2

]



=


σ−1

1

[
c2|1 p1φ

(
θ2−µ1
σ1

) [
∂θ2
∂σ2

]
− c2|1 p1φ

(
θ1−µ1
σ1

) [
∂θ1
∂σ2

]
+ c3|1 p1φ

(
µ1−θ2
σ1

) [
−
∂θ2
∂σ2

]]
+

σ−1
2

[
c1|2 p2φ

(
θ1−µ2
σ2

) [
∂θ1
∂σ2
−

(
θ1−µ2
σ2

)]
+ c3|2 p2φ

(
µ2−θ2
σ2

) [
−∂θ2
∂σ2
−

(
µ2−θ2
σ2

)]]
+

σ−1
3

[
c1|3 p3φ

(
θ1−µ3
σ3

) [
∂θ1
∂σ2

]
+ c2|3 p3φ

(
θ2−µ3
σ3

) [
∂θ2
∂σ2

]
− c2|3 p3φ

(
θ1−µ3
σ3

) [
∂θ1
∂σ2

]]


=


σ−1

1

[
φ
(
θ2−µ1
σ1

) [
∂θ2
∂σ2

] (
c2|1 p1 − c3|1 p1

)
− c2|1 p1φ

(
θ1−µ1
σ1

) [
∂θ1
∂σ2

]]
+

σ−1
2

[
c1|2 p2φ

(
θ1−µ2
σ2

) [
∂θ1
∂σ2
−

(
θ1−µ2
σ2

)]
+ c3|2 p2φ

(
µ2−θ2
σ2

) [
−∂θ2
∂σ2
−

(
µ2−θ2
σ2

)]]
+

σ−1
3

[
φ
(
θ1−µ3
σ3

) [
∂θ1
∂σ2

] (
c1|3 p3 − c2|3 p3

)
+ c2|3 p3φ

(
θ2−µ3
σ3

) [
∂θ2
∂σ2

]]

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(
∂BC
∂σ3

)
=

∂

∂σ3


c2|1 p1 ×

(
Φ

(
θ2−µ1
σ1

)
− Φ

(
θ1−µ1
σ1

))
+ c3|1 p1 ×

(
Φ

(
µ1−θ2
σ1

))
+

c1|2 p2 ×
(
Φ

(
θ1−µ2
σ2

))
+ c3|2 p2 ×

(
Φ

(
µ2−θ2
σ2

))
+

c1|3 p3 ×
(
Φ

(
θ1−µ3
σ3

))
+ c2|3 p3 ×

(
Φ

(
θ2−µ3
σ3

)
− Φ

(
θ1−µ3
σ3

))


=


c2|1 p1 ×

∂
∂σ3

[
Φ

(
θ2−µ1
σ1

)]
− c2|1 p1 ×

∂
∂σ3

[
Φ

(
θ1−µ1
σ1

)]
+ c3|1 p1 ×

∂
∂σ3

[
Φ

(
µ1−θ2
σ1

)]
+

c1|2 p2 ×
∂
∂σ3

[
Φ

(
θ1−µ2
σ2

)]
+ c3|2 p2 ×

∂
∂σ3

[
Φ

(
µ2−θ2
σ2

)]
+

c1|3 p3 ×
∂
∂σ3

[
Φ

(
θ1−µ3
σ3

)]
+ c2|3 p3 ×

∂
∂σ3

[
Φ

(
θ2−µ3
σ3

)]
− c2|3 p3 ×

∂
∂σ3

[
Φ

(
θ1−µ3
σ3

)]


=



c2|1 p1 × φ
(
θ2−µ1
σ1

)
∂
∂σ3

[(
θ2−µ1
σ1

)]
− c2|1 p1 × φ

(
θ1−µ1
σ1

)
∂
∂σ3

[(
θ1−µ1
σ1

)]
+

c3|1 p1 × φ
(
µ1−θ2
σ1

)
∂
∂σ3

[(
µ1−θ2
σ1

)]
+ c1|2 p2 × φ

(
θ1−µ2
σ2

)
∂
∂σ3

[(
θ1−µ2
σ2

)]
+

c3|2 p2 × φ
(
µ2−θ2
σ2

)
∂
∂σ3

[(
µ2−θ2
σ2

)]
+ c1|3 p3 × φ

(
θ1−µ3
σ3

)
∂
∂σ3

[(
θ1−µ3
σ3

)]
+

c2|3 p3 × φ
(
θ2−µ3
σ3

)
∂
∂σ3

[(
θ2−µ3
σ3

)]
− c2|3 p3 × φ

(
θ1−µ3
σ3

)
∂
∂σ3

[(
θ1−µ3
σ3

)]



=



c2|1 p1 × φ
(
θ2−µ1
σ1

) [
∂θ2
∂σ3

σ−1
1

]
−

c2|1 p1 × φ
(
θ1−µ1
σ1

) [
∂θ1
∂σ3

σ−1
1

]
+

c3|1 p1 × φ
(
µ1−θ2
σ1

) [
−
∂θ2
∂σ3

σ−1
1

]
+

c1|2 p2 × φ
(
θ1−µ2
σ2

) [
∂θ1
∂σ3

σ−1
2

]
+

c3|2 p2 × φ
(
µ2−θ2
σ2

) [
−
∂θ2
∂σ3

σ−1
2

]
+

c1|3 p3 × φ
(
θ1−µ3
σ3

) [
1
σ3

∂
∂σ3

(θ1 − µ3) + (θ1 − µ3) ∂
∂σ3

(
1
σ3

)]
+

c2|3 p3 × φ
(
θ2−µ3
σ3

) [
1
σ3

∂
∂σ3

(θ2 − µ3) + (θ2 − µ3) ∂
∂σ3

(
1
σ3

)]
−

c2|3 p3 × φ
(
θ1−µ3
σ3

) [
1
σ3

∂
∂σ3

(θ1 − µ3) + (θ1 − µ3) ∂
∂σ3

(
1
σ3

)]



=



c2|1 p1 × φ
(
θ2−µ1
σ1

) [
∂θ2
∂σ3

σ−1
1

]
−

c2|1 p1 × φ
(
θ1−µ1
σ1

) [
∂θ1
∂σ3

σ−1
1

]
+

c3|1 p1 × φ
(
µ1−θ2
σ1

) [
−
∂θ2
∂σ3

σ−1
1

]
+

c1|2 p2 × φ
(
θ1−µ2
σ2

) [
∂θ1
∂σ3

σ−1
2

]
+

c3|2 p2 × φ
(
µ2−θ2
σ2

) [
−
∂θ2
∂σ3

σ−1
2

]
+

c1|3 p3 × φ
(
θ1−µ3
σ3

) [
σ−1

3
∂θ1
∂σ3
− (θ1 − µ3)σ−2

3

]
+

c2|3 p3 × φ
(
θ2−µ3
σ3

) [
σ−1

3
∂θ2
∂σ3
− (θ2 − µ3)σ−2

3

]
−

c2|3 p3 × φ
(
θ1−µ3
σ3

) [
σ−1

3
∂θ1
∂σ3
− (θ1 − µ3)σ−2

3

]


and continuing to simplify:

146



(
∂BC
∂σ3

)
=



σ−1
1 c2|1 p1 × φ

(
θ2−µ1
σ1

) [
∂θ2
∂σ3

]
−

σ−1
1 c2|1 p1 × φ

(
θ1−µ1
σ1

) [
∂θ1
∂σ3

]
+

σ−1
1 c3|1 p1 × φ

(
µ1−θ2
σ1

) [
−
∂θ2
∂σ3

]
+

σ−1
2 c1|2 p2 × φ

(
θ1−µ2
σ2

) [
∂θ1
∂σ3

]
+

σ−1
2 c3|2 p2 × φ

(
µ2−θ2
σ2

) [
−
∂θ2
∂σ3

]
+

σ−1
3 c1|3 p3 × φ

(
θ1−µ3
σ3

) [
∂θ1
∂σ3
−

(
θ1−µ3
σ3

)]
+

σ−1
3 c2|3 p3 × φ

(
θ2−µ3
σ3

) [
∂θ2
∂σ3
−

(
θ2−µ3
σ3

)]
−

σ−1
3 c2|3 p3 × φ

(
θ1−µ3
σ3

) [
∂θ1
∂σ3
−

(
θ1−µ3
σ3

)]



=



σ−1
1 c2|1 p1 × φ

(
θ2−µ1
σ1

) [
∂θ2
∂σ3

]
−

σ−1
1 c2|1 p1 × φ

(
θ1−µ1
σ1

) [
∂θ1
∂σ3

]
+

σ−1
1 c3|1 p1 × φ

(
µ1−θ2
σ1

) [
−
∂θ2
∂σ3

]
+

σ−1
2 c1|2 p2 × φ

(
θ1−µ2
σ2

) [
∂θ1
∂σ3

]
+

σ−1
2 c3|2 p2 × φ

(
µ2−θ2
σ2

) [
−
∂θ2
∂σ3

]
+

σ−1
3 c1|3 p3 × φ

(
θ1−µ3
σ3

) [
∂θ1
∂σ3
−

(
θ1−µ3
σ3

)]
+

σ−1
3 c2|3 p3 × φ

(
θ2−µ3
σ3

) [
∂θ2
∂σ3
−

(
θ2−µ3
σ3

)]
−

σ−1
3 c2|3 p3 × φ

(
θ1−µ3
σ3

) [
∂θ1
∂σ3
−

(
θ1−µ3
σ3

)]



=


σ−1

1

[
φ
(
θ2−µ1
σ1

) [
∂θ2
∂σ3

] (
c2|1 p1 − c3|1 p1

)
− c2|1 p1φ

(
θ1−µ1
σ1

) [
∂θ1
∂σ3

]]
+

σ−1
2

[
c1|2 p2φ

(
θ1−µ2
σ2

) [
∂θ1
∂σ3

]
+ c3|2 p2φ

(
µ2−θ2
σ2

) [
−
∂θ2
∂σ3

]]
+

σ−1
3

[
φ
(
θ1−µ3
σ3

) [
∂θ1
∂σ3
−

(
θ1−µ3
σ3

)] (
c1|3 p3 − c2|3 p3

)
+ c2|3 p3φ

(
θ2−µ3
σ3

) [
∂θ2
∂σ3
−

(
θ2−µ3
σ3

)]]

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A.3 Partial derivatives of four-class Bayes Cost with respect to all distributional parameters.

(
∂BC
∂µ1

)
= σ−1

1

c2|1 ×

φ  θ∗2 − µ1

σ1

  ∂θ∗2
∂µ1

− 1
 − φ  θ∗1 − µ1

σ1

  ∂θ∗1
∂µ1

− 1
 + c3|1 ×

φ  θ∗3 − µ1

σ1

  ∂θ∗3
∂µ1

− 1
 − φ  θ∗2 − µ1

σ1

  ∂θ∗3
∂µ1

− 1
 + c4|1 ×

φ  µ1 − θ
∗
3

σ1

 − ∂θ∗3
∂µ1


+ σ−1

2

c1|2 ×

φ  θ∗1 − µ2

σ2

 ∂θ∗1
∂µ1

 + c3|2 ×

φ  θ∗3 − µ2

σ2

 ∂θ∗3
∂µ1

− φ

 θ∗2 − µ2

σ2

 ∂θ∗2
∂µ1

 + c4|2 ×

φ  µ∗2 − θ3

σ2

 (−1)
∂θ∗3
∂µ1


+ σ−1

3

c1|3 ×

φ  θ∗1 − µ3

σ3

 ∂θ∗1
∂µ1

 + c2|3 ×

φ  θ∗2 − µ3

σ3

 ∂θ∗2
∂µ1

− φ

 θ∗1 − µ3

σ3

 ∂θ∗1
∂µ1

 + c4|3 ×

φ  µ∗3 − θ3

σ3

 (−1)
∂θ∗3
∂µ1


+ σ−1

4

c1|4 ×

φ  θ∗1 − µ4

σ4

 ∂θ∗1
∂µ1

 + c2|4 ×

φ  θ∗2 − µ4

σ4

 ∂θ∗2
∂µ1

− φ

 θ∗1 − µ4

σ4

 ∂θ∗1
∂µ1

 + c3|4 ×

φ  θ∗3 − µ4

σ4

 ∂θ∗3
∂µ1

− φ

 θ∗2 − µ4

σ4

 ∂θ∗2
∂µ1


(A.4)

(
∂BC
∂µ2

)
= σ−1

1

c2|1 ×

φ  θ∗2 − µ1

σ1

  ∂θ∗2
∂µ2

 − φ  θ∗1 − µ1

σ1

  ∂θ∗1
∂µ2

 + c3|1 ×

φ  θ∗3 − µ1

σ1

  ∂θ∗3
∂µ2

 − φ  θ∗2 − µ1

σ1

  ∂θ∗3
∂µ2

 + c4|1 ×

φ  µ1 − θ
∗
3

σ1

 (−1)
∂θ∗3
∂µ2


+ σ−1

2

c1|2 ×

φ  θ∗1 − µ2

σ2

  ∂θ∗1
∂µ2

− 1
 + c3|2 ×

φ  θ∗3 − µ2

σ2

  ∂θ∗3
∂µ2

− 1
 − φ  θ∗2 − µ2

σ2

  ∂θ∗2
∂µ2

− 1
 + c4|2 ×

φ  µ∗2 − θ3

σ2

 1 − ∂θ∗3
∂µ2


+ σ−1

3

c1|3 ×

φ  θ∗1 − µ3

σ3

 ∂θ∗1
∂µ2

 + c2|3 ×

φ  θ∗2 − µ3

σ3

 ∂θ∗2
∂µ2

− φ

 θ∗1 − µ3

σ3

 ∂θ∗1
∂µ2

 + c4|3 ×

φ  µ∗3 − θ3

σ3

 (−1)
∂θ∗3
∂µ2


+ σ−1

4

c1|4 ×

φ  θ∗1 − µ4

σ4

 ∂θ∗1
∂µ2

 + c2|4 ×

φ  θ∗2 − µ4

σ4

 ∂θ∗2
∂µ2

− φ

 θ∗1 − µ4

σ4

 ∂θ∗1
∂µ2

 + c3|4 ×

φ  θ∗3 − µ4

σ4

 ∂θ∗3
∂µ2

− φ

 θ∗2 − µ4

σ4

 ∂θ∗2
∂µ2


(A.5)

(
∂BC
∂µ3

)
= σ−1

1

c2|1 ×

φ  θ∗2 − µ1

σ1

  ∂θ∗2
∂µ3

 − φ  θ∗1 − µ1

σ1

  ∂θ∗1
∂µ3

 + c3|1 ×

φ  θ∗3 − µ1

σ1

  ∂θ∗3
∂µ3

 − φ  θ∗2 − µ1

σ1

  ∂θ∗3
∂µ3

 + c4|1 ×

φ  µ1 − θ
∗
3

σ1

 (−1)
∂θ∗3
∂µ3


+ σ−1

2

c1|2 ×

φ  θ∗1 − µ2

σ2

 ∂θ∗1
∂µ3

 + c3|2 ×

φ  θ∗3 − µ2

σ2

 ∂θ∗3
∂µ3

− φ

 θ∗2 − µ2

σ2

 ∂θ∗2
∂µ3

 + c4|2 ×

φ  µ∗2 − θ3

σ2

 (−1)
∂θ∗3
∂µ3


+ σ−1

3

c1|3 ×

φ  θ∗1 − µ3

σ3

  ∂θ∗1
∂µ3

− 1
 + c2|3 ×

φ  θ∗2 − µ3

σ3

  ∂θ∗2
∂µ3

− 1
 − φ  θ∗1 − µ3

σ3

  ∂θ∗1
∂µ3

− 1
 + c4|3 ×

φ  µ∗3 − θ3

σ3

 − ∂θ∗3
∂µ3

1


+ σ−1
4

c1|4 ×

φ  θ∗1 − µ4

σ4

 ∂θ∗1
∂µ3

 + c2|4 ×

φ  θ∗2 − µ4

σ4

 ∂θ∗2
∂µ3

− φ

 θ∗1 − µ4

σ4

 ∂θ∗1
∂µ3

 + c3|4 ×

φ  θ∗3 − µ4

σ4

 ∂θ∗3
∂µ3

− φ

 θ∗2 − µ4

σ4

 ∂θ∗2
∂µ3


(A.6)

(
∂BC
∂µ4

)
= σ−1

1

c2|1 ×

φ  θ∗2 − µ1

σ1

  ∂θ∗2
∂µ4

 − φ  θ∗1 − µ1

σ1

  ∂θ∗1
∂µ4

 + c3|1 ×

φ  θ∗3 − µ1

σ1

  ∂θ∗3
∂µ4

 − φ  θ∗2 − µ1

σ1

  ∂θ∗3
∂µ4

 + c4|1 ×

φ  µ1 − θ
∗
3

σ1

 (−1)
∂θ∗3
∂µ4


+ σ−1

2

c1|2 ×

φ  θ∗1 − µ2

σ2

 ∂θ∗1
∂µ4

 + c3|2 ×

φ  θ∗3 − µ2

σ2

 ∂θ∗3
∂µ4

− φ

 θ∗2 − µ2

σ2

 ∂θ∗2
∂µ4

 + c4|2 ×

φ  µ∗2 − θ3

σ2

 (−1)
∂θ∗3
∂µ4


+ σ−1

3

c1|3 ×

φ  θ∗1 − µ3

σ3

 ∂θ∗1
∂µ4

 + c2|3 ×

φ  θ∗2 − µ3

σ3

 ∂θ∗2
∂µ4

− φ

 θ∗1 − µ3

σ3

 ∂θ∗1
∂µ4

 + c4|3 ×

φ  µ∗3 − θ3

σ3

 (−1)
∂θ∗3
∂µ4


+ σ−1

4

c1|4 ×

φ  θ∗1 − µ4

σ4

  ∂θ∗1
∂µ4

− 1
 + c2|4 ×

φ  θ∗2 − µ4

σ4

  ∂θ∗2
∂µ4

− 1
 − φ  θ∗1 − µ4

σ4

  ∂θ∗1
∂µ4

− 1
 + c3|4 ×

φ  θ∗3 − µ4

σ4

  ∂θ∗3
∂µ4

− 1
 − φ  θ∗2 − µ4

σ4

  ∂θ∗2
∂µ4

− 1

(A.7)

(
∂BC
∂σ1

)
= σ−1

1


c2|1 ×

[
φ

(
θ∗2−µ1
σ1

) [
∂θ∗2
∂σ1

+

(
θ∗2−µ1
σ1

)]
− φ

(
θ∗1−µ1
σ1

) [
∂θ∗1
∂σ1

+

(
θ∗1−µ1
σ1

)]]
+c3|1 ×

[
φ

(
θ∗3−µ1
σ1

) [
∂θ∗3
∂σ1

+

(
θ∗3−µ1
σ1

)]
− φ

(
θ∗2−µ1
σ1

) [
∂θ∗2
∂σ1

+

(
θ∗2−µ1
σ1

)]]
+ c4|1 ×

[
φ

(
µ1−θ

∗
3

σ1

) [
(−1)

∂θ∗3
∂σ1

+

(
µ1−θ

∗
3

σ1

)]]


+ σ−1
2

c1|2 ×

φ  θ∗1 − µ2

σ2

 ∂θ∗1
∂σ1

 + c3|2 ×

φ  θ∗3 − µ2

σ2

 ∂θ∗3
∂σ1

− φ

 θ∗2 − µ2

σ2

 ∂θ∗3
∂σ1

 + c4|2 ×

φ  µ∗2 − θ3

σ2

 (−1)
∂θ∗3
∂σ1


+ σ−1

3

c1|3 ×

φ  θ∗1 − µ3

σ3

 ∂θ∗1
∂σ1

 + c2|3 ×

φ  θ∗2 − µ3

σ3

 ∂θ∗2
∂σ1

− φ

 θ∗1 − µ3

σ3

 ∂θ∗1
∂σ1

 + c4|3 ×

φ  µ∗3 − θ3

σ3

 (−1)
∂θ∗3
∂σ1


+ σ−1

4

c1|4 ×

φ  θ∗1 − µ4

σ4

 ∂θ∗1
∂σ1

 + c2|4 ×

φ  θ∗2 − µ4

σ4

 ∂θ∗2
∂σ1

− φ

 θ∗1 − µ4

σ4

 ∂θ∗1
∂σ1

 + c3|4 ×

φ  θ∗3 − µ4

σ4

 ∂θ∗3
∂σ1

− φ

 θ∗2 − µ4

σ4

 ∂θ∗2
∂σ1

 (A.8)

(
∂BC
∂σ2

)
= σ−1

1

c2|1 ×

φ  θ∗2 − µ1

σ1

 ∂θ∗2
∂σ2

− φ

 θ∗1 − µ1

σ1

 ∂θ∗1
∂σ2

 + c3|1 ×

φ  θ∗3 − µ1

σ1

 ∂θ∗3
∂σ2

− φ

 θ∗2 − µ1

σ1

 ∂θ∗2
∂σ2

 + c4|1 ×

φ  µ1 − θ
∗
3

σ1

 (−1)
∂θ∗3
∂σ2


+ σ−1

2


c1|2 ×

[
φ

(
θ∗1−µ2
σ2

) [
∂θ∗1
∂σ2

+

(
θ∗1−µ2
σ2

)]]
+ c3|2 ×

[
φ

(
θ∗3−µ2
σ2

) [
∂θ∗3
∂σ2

+

(
θ∗3−µ2
σ2

)]
− φ

(
θ∗2−µ2
σ2

) [
∂θ∗2
∂σ2

+

(
θ∗2−µ2
σ2

)]]
+ c4|2 ×

[
φ

(
µ∗2−θ3
σ2

) [
(−1)

∂θ∗3
∂σ2

+

(
µ∗2−θ3
σ2

)]]


+ σ−1
3

c1|3 ×

φ  θ∗1 − µ3

σ3

 ∂θ∗1
∂σ2

 + c2|3 ×

φ  θ∗2 − µ3

σ3

 ∂θ∗2
∂σ2

− φ

 θ∗1 − µ3

σ3

 ∂θ∗1
∂σ2

 + c4|3 ×

φ  µ∗3 − θ3

σ3

 (−1)
∂θ∗3
∂σ2


+ σ−1

4

c1|4 ×

φ  θ∗1 − µ4

σ4

 ∂θ∗1
∂σ2

 + c2|4 ×

φ  θ∗2 − µ4

σ4

 ∂θ∗2
∂σ2

− φ

 θ∗1 − µ4

σ4

 ∂θ∗1
∂σ2

 + c3|4 ×

φ  θ∗3 − µ4

σ4

 ∂θ∗3
∂σ2

− φ

 θ∗2 − µ4

σ4

 ∂θ∗2
∂σ2

 (A.9)
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(
∂BC
∂σ3

)
= σ−1

1

c2|1 ×

φ  θ∗2 − µ1

σ1

 ∂θ∗2
∂σ3

− φ

 θ∗1 − µ1

σ1

 ∂θ∗1
∂σ3

 + c3|1 ×

φ  θ∗3 − µ1

σ1

 ∂θ∗3
∂σ3

− φ

 θ∗2 − µ1

σ1

 ∂θ∗2
∂σ3

 + c4|1 ×

φ  µ1 − θ
∗
3

σ1

 (−1)
∂θ∗3
∂σ3


+ σ−1

2

c1|2 ×

φ  θ∗1 − µ2

σ2

 ∂θ∗1
∂σ3

 + c3|2 ×

φ  θ∗3 − µ2

σ2

 ∂θ∗3
∂σ3

− φ

 θ∗2 − µ2

σ2

 ∂θ∗3
∂σ3

 + c4|2 ×

φ  µ∗2 − θ3

σ2

 (−1)
∂θ∗3
∂σ3


+ σ−1

3


c1|3 ×

[
φ

(
θ∗1−µ3
σ3

) [
∂θ∗1
∂σ3

+

(
θ∗1−µ3
σ3

)]]
+c2|3 ×

[
φ

(
θ∗2−µ3
σ3

) [
∂θ∗2
∂σ3

+

(
θ∗2−µ3
σ3

)]
− φ

(
θ∗1−µ3
σ3

) [
∂θ∗1
∂σ3

+

(
θ∗1−µ3
σ3

)]]
+ c4|3 ×

[
φ

(
µ∗3−θ3
σ3

) [
(−1)

∂θ∗3
∂σ3

+

(
µ∗3−θ3
σ3

)]]


+ σ−1
4

c1|4 ×

φ  θ∗1 − µ4

σ4

 ∂θ∗1
∂σ3

 + c2|4 ×

φ  θ∗2 − µ4

σ4

 ∂θ∗2
∂σ3

− φ

 θ∗1 − µ4

σ4

 ∂θ∗1
∂σ3

 + c3|4 ×

φ  θ∗3 − µ4

σ4

 ∂θ∗3
∂σ3

− φ

 θ∗2 − µ4

σ4

 ∂θ∗2
∂σ3

 (A.10)

(
∂BC
∂σ4

)
= σ−1

1

c2|1 ×

φ  θ∗2 − µ1

σ1

 ∂θ∗2
∂σ4

− φ

 θ∗1 − µ1

σ1

 ∂θ∗1
∂σ4

 + c3|1 ×

φ  θ∗3 − µ1

σ1

 ∂θ∗3
∂σ4

− φ

 θ∗2 − µ1

σ1

 ∂θ∗2
∂σ4

 + c4|1 ×

φ  µ1 − θ
∗
3

σ1

 (−1)
∂θ∗3
∂σ4


+ σ−1

2

c1|2 ×

φ  θ∗1 − µ2

σ2

 ∂θ∗1
∂σ4

 + c3|2 ×

φ  θ∗3 − µ2

σ2

 ∂θ∗3
∂σ4

− φ

 θ∗2 − µ2

σ2

 ∂θ∗3
∂σ4

 + c4|2 ×

φ  µ∗2 − θ3

σ2

 (−1)
∂θ∗3
∂σ4


+ σ−1

3

c1|3 ×

φ  θ∗1 − µ3

σ3

 ∂θ∗1
∂σ4

 + c2|3 ×

φ  θ∗2 − µ3

∂σ4

 ∂θ∗2
∂σ2

− φ

 θ∗1 − µ3

∂σ4

 ∂θ∗1
∂σ2

 + c4|3 ×

φ  µ∗3 − θ3

∂σ4

 (−1)
∂θ∗3
∂σ2


+ σ−1

4


c1|4 ×

[
φ

(
θ∗1−µ4
σ4

) [
∂θ∗1
∂σ4

+

(
θ∗1−µ4
σ4

)]]
+ c2|4 ×

[
φ

(
θ∗2−µ4
σ4

) [
∂θ∗2
∂σ4

+

(
θ∗2−µ4
σ4

)]
− φ

(
θ∗1−µ4
σ4

) [
∂θ∗1
∂σ4

+

(
θ∗1−µ4
σ4

)]]
+c3|4 ×

[
φ

(
θ∗3−µ4
σ4

) [
∂θ∗3
∂σ4

+

(
θ∗3−µ4
σ4

)]
− φ

(
θ∗2−µ4
σ4

) [
∂θ∗2
∂σ4

+

(
θ∗2−µ4
σ4

)]]
 (A.11)

A.4 Wald and Log Wald CI for Bayes Cost

The Wald method for constructing CIs is common and easily applied for large sample sizes,

though may not perform as well as other methods. Developed with the large sample normality of

maximum likelihood estimators (MLEs), the statistic

z =
θ̂ − θ0

S θ̂

(A.12)

is approximately standard normal when θ = θ0 [3, p. 11],[70]. The (1 − α)100% Wald CI is then

found as

θ̂ ± Z1− α2 × S θ̂ (A.13)

Although the Wald CI is easy to implement, it performs poorly for binomial probabilities with

respect to coverage [2]. Despite this, the Wald CI is considered for BC as it is easily computed and

a good place to start for baseline comparison of newly developed methods, and may perform better

for the sum of binomial/multinomial probabilities (i.e. BC) rather than for binomial probabilities

directly.

A.4.1 Bayes Cost for two-class classification system.

Consider a two-class classification system with results tabulated in a contingency table as in

Table 2.3. Class one has n1 = X1|1 +X2|1 observations and class two has n2 = X1|2 +X2|2 observations

(with n1 and n2 fixed). The outcomes from each class are mutually exclusive and independently
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distributed, and for each observation in a class, the classification system labels each observation as

only one of the two possible outcomes. No distributional assumptions on the feature or features used

for classification are made. In [76], J is defined as the maximum of the sum of correct classification

rates minus one, which can be written as

J = max
θ∈Θ

[
X1|1

n1
+

X2|2

n2
− 1

]
(A.14)

where X1|1 and X2|2 are the random variables representing the number of observations correctly

classified for a vector of thresholds θ ∈ Θ . Bayes Cost, which is defined to minimize the

misclassification rates instead of maximizing the correct classification rates, can be used similarly.

In the nonparametric framework, BC (with equal cost and prevalence multipliers, assumed to equal

one) may be written

BC = min
θ∈Θ

[
X2|1

n1
+

X1|2

n2

]
(A.15)

where X2|1 and X1|2 are the random variables representing the misclassified observations for a θ ∈ Θ .

The expected value and variance of BC defined in Equation A.15 is determined using properties of

the binomial distribution.

E(BC) = E
(

X2|1

n1
+

X1|2

n2

)
=

1
n1

E(X2|1) +
1
n2

E(X1|2)

=
P2|1(θ) × n1

n1
+

P1|2(θ) × n2

n2

= P2|1(θ) + P1|2(θ) (A.16)

Var(BC) = Var
(

X2|1

n1
+

X1|2

n2

)
=

1
n2

1

Var(X2|1) +
1
n2

2

Var(X1|2)

=
P2|1(θ) × P1|1(θ) × n1

n2
1

+
P1|2(θ) × P2|2(θ) × n2

n2
2

=
P2|1(θ) × P1|1(θ)

n1
+

P1|2(θ) × P2|2(θ)
n2

(A.17)
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where Pi| j(θ) is the true probability of classifying class j as class i for a given θ ∈ Θ and n j is the

total number of observations sampled from the jth class. Using the MLEs for Pi| j(θ) (from the

binomial distribution presented in Section 2.7.1), BC and the variance of B̂C are estimated

B̂C =
x2|1

n1
+

x1|2

n2
(A.18)

Var(B̂C) =
x1|1x2|1

(n1)3 +
x1|2x2|2

(n2)3 (A.19)

For greater utility, BC may be defined with prevalences on classes and different costs on

misclassification errors [58, 65] such that

BC = min
θ∈Θ

[
c2|1 p1

X2|1

n1
+ c1|2 p2

X1|2

n2

]
(A.20)

where ci| j is the fixed cost associated with misclassifying class j as class i and p j is the fixed

prevalence for the jth class. The expected value and variance of BC defined in Equation A.20 is

E[BC] = p1c2|1P2|1(θ) + p2c1|2P1|2(θ) (A.21)

Var[BC] = (p1c2|1)2 P2|1(θ) × P1|1(θ)
n1

+ (p2c1|2)2 P1|2(θ) × P2|2(θ)
n2

(A.22)

Once again, using the MLEs for the binomial proportions Pi| j(θ) , B̂C and the variance of B̂C are

B̂C = p1c2|1
x2|1

n1
+ p2c1|2

x1|2

n2
(A.23)

Var(B̂C) = (p1c2|1)2 x1|1x2|1

n3
1

+ (p2c1|2)2 x1|2x2|2

n3
2

(A.24)

A.4.2 Bayes Cost for a k-class classification system.

Consider a classification system with three or more classes where the diagnostic outcomes may

be tabulated in a contingency table as in Table 2.4, for a given θ ∈ Θ . Once again, no distributional

assumptions on the feature or features used for classification are made. For the three-class example,

the first class has n1 = x1|1 + x2|1 + x3|1 observations, the second class has n2 = x1|2 + x2|2 + x3|2,

and the third class has n3 = x1|3 + x2|3 + x3|3 observations (where n1, n2, and n3 are all assumed

fixed). The outcomes from the classes are mutually exclusive with independent distributions and

the classification system labels each observation as only one of the three (or k for k classes) possible

outcomes. Therefore, the number of outcomes in each diagnostic state in a single class (or column
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in the contingency table) are distributed multinomial (see Section 2.7.2). Similar to the two-class

classification system, BC is defined with costs and class prevalence multipliers:

BC = min
θ∈Θ


3∑

i=1
i, j

3∑
j=1

ci| j p j
Xi| j

n j

 (A.25)

The expected value and variance of BC is determined directly from the properties of the

multinomial distribution, taking into account the covariances between outcomes within the same

class. Therefore,

E(BC) =

3∑
i=1
i, j

3∑
j=1

ci| j p jPi| j(θ) (A.26)

and

Var(BC) =

3∑
j=1


3∑

i=1
i, j

 (ci| j p j)2

n j
Pi| j(θ) × (1 − Pi| j(θ))

 − 2p2
j

n j

3∏
i=1
i, j

ci| jPi| j(θ)

 (A.27)

The MLEs for the multinomial distribution are used to estimate BC and the variance of B̂C as

follows

B̂C =

3∑
i=1
i, j

3∑
j=1

ci| j p j
xi| j

n j
(A.28)

and

Var(B̂C) =

3∑
j=1


3∑

i=1
i, j

 (ci| j p j)2 × xi| j

n2
j

× (1 −
xi| j

n j
)

 − 2p2
j

n j

3∏
i=1
i, j

ci| j
xi| j

n j

 (A.29)

Equation A.25 can be generalized for k classes as [58]

BC = min
θ∈Θ


k∑

i=1
i, j

k∑
j=1

ci| j p j
Xi| j

n j

 (A.30)

Further, B̂C and Var(B̂C) for any k-class BC is found similar to Equations A.28 and A.29 using the

mean, variance, and covariance of multinomial random variables. Although an equivalence between

the optimal threshold for the two-class BC and the GYI optimal threshold exists (see Theorem 3,

Section 2.5.2), for k ≥ 3 classes this equivalence of optimal thresholds does not universally hold,

specifically when the costs of misclassification within a single class or between classes are not

equal [58].

152



A.4.3 Wald and Log Wald Confidence Intervals.

A (1 − α)100% Wald CI for the k-class BC (k = 2, 3, . . . ) is

B̂C ± Z(1− α2 )

√
Var(B̂C) (A.31)

where the B̂C and Var(B̂C) are found nonparametrically as in Sections A.4.1 and A.4.2. Since BC

is bounded above zero, a CI around the natural logarithm of BC is also considered in order to assure

that the CI greater than zero [41, p.163]. The (1 − α)100% Wald CI around the log of BC is

log(B̂C) ± zα/2 × Var(log(B̂C)) (A.32)

Then the (1 − α)100% log Wald CI for BC is

BC × exp
[
±zα/2 × Var(log(B̂C))

]
(A.33)

where the delta method is used to approximate Var(log(B̂C)) as

Var(log(B̂C)) ≈
∂ log(B̂C)

∂B̂C

2

Var(B̂C) =
1

B̂C
2 Var(B̂C) (A.34)
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A.5 Regularity Conditions

Regularity conditions required for Theorem 8 are given in [12, p.516], listed below. These

conditions are assumed for the normal and multinomial distributions, which are exponential family

distributions.

(A1) We observe X1, . . . , Xn where Xi ∼ f (x | θ) are iid.
(A2) The parameter is identifiable; that is, if θ , θ′ , then f (x | θ) , f (x | θ′).
(A3) The densities f (x | θ) have common support, and f (x | θ) is differentiable in θ .
(A4) The parameter space Ω contains an open set ω of which the true parameter value
θ0 is an interior point.
(A5) For every x ∈ X , the density f (x | θ) is three times differentiable with respect to
θ , the third derivative is continuous in θ , and

∫
f (x | θ)dx can be differentiated three

times under the integral sign.
(A6) For any θ0 ∈ Ω , there exists a positive number c and a function M(x) (both
of which may depend on θ0) such that

∣∣∣∣ ∂3

∂θ3 log f (x | θ)
∣∣∣∣ ≤ M(x) for all x ∈ X ,

θ0 − c < θ < θ0 + c , with Eθ0 [M(X)] < ∞ .
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B.1 Parametric Confidence Interval Simulation Tables

Table B.1: Coverage probability and length for parametric 95% CIs around BC under equal costs
and three classes with a normally distributed feature.

Delta GCI BCa BP AN

n j BC3 Cov Len Cov Len Cov Len Cov Len Cov Len

Normal 10 1.23 92.60 0.70 96.13 0.67 88.20 0.63 90.26 0.68 83.82 0.68
σ3 = 1 0.91 91.98 0.69 96.03 0.68 89.78 0.63 89.36 0.66 85.54 0.66

0.63 91.78 0.65 96.07 0.65 89.88 0.58 87.52 0.58 85.16 0.58
0.42 91.02 0.57 95.83 0.60 89.42 0.51 85.24 0.48 84.66 0.47
0.27 90.04 0.46 95.47 0.52 89.36 0.41 83.12 0.37 84.98 0.37

50 1.23 94.80 0.32 95.63 0.32 94.48 0.32 94.42 0.32 93.24 0.32
0.91 94.78 0.32 95.70 0.32 94.46 0.31 94.28 0.31 93.52 0.31
0.63 94.44 0.30 95.77 0.30 94.14 0.29 93.64 0.29 93.00 0.29
0.42 94.02 0.26 95.43 0.26 94.12 0.26 93.08 0.25 93.20 0.25
0.27 94.50 0.21 95.50 0.22 94.00 0.21 92.58 0.20 93.20 0.20

100 1.23 94.56 0.23 95.47 0.23 94.30 0.23 94.44 0.23 93.48 0.23
0.91 94.48 0.23 94.97 0.22 94.46 0.23 94.26 0.22 93.60 0.22
0.63 95.12 0.21 94.93 0.21 94.22 0.21 93.84 0.21 93.80 0.21
0.42 94.72 0.18 94.73 0.19 94.12 0.18 93.66 0.18 93.88 0.18
0.27 94.70 0.15 94.57 0.15 94.12 0.15 93.74 0.15 93.60 0.15

250 1.23 95.04 0.14 95.20 0.14 94.98 0.14 94.86 0.14 94.90 0.14
0.91 94.82 0.14 95.30 0.14 94.86 0.14 94.58 0.14 94.88 0.14
0.63 94.76 0.13 95.03 0.13 94.72 0.13 94.16 0.13 94.42 0.13
0.42 94.70 0.12 94.77 0.12 94.54 0.12 94.24 0.12 94.62 0.12
0.27 94.66 0.09 94.80 0.10 94.36 0.10 94.24 0.09 94.52 0.09

Normal 10 1.23 92.44 0.76 96.33 0.73 90.24 0.72 89.86 0.74 87.48 0.74
σ3 = 2 0.91 91.66 0.74 96.57 0.73 91.44 0.70 89.52 0.70 86.74 0.70

0.63 91.38 0.67 96.30 0.69 91.02 0.63 87.78 0.61 85.88 0.60
0.42 90.74 0.58 96.27 0.62 90.08 0.53 85.96 0.50 85.10 0.49
0.27 90.20 0.47 96.30 0.52 89.38 0.43 83.74 0.38 85.18 0.37

50 1.23 94.54 0.35 95.43 0.35 94.74 0.35 94.38 0.35 93.80 0.35
0.91 94.36 0.34 95.73 0.34 94.40 0.34 94.22 0.34 93.54 0.34
0.63 94.04 0.31 95.73 0.31 94.26 0.31 93.82 0.30 93.62 0.30
0.42 93.78 0.27 95.83 0.27 94.14 0.26 93.44 0.26 93.12 0.26
0.27 93.40 0.21 95.57 0.22 93.92 0.21 92.90 0.20 93.34 0.20

100 1.23 95.08 0.25 95.07 0.25 94.30 0.25 94.18 0.25 94.18 0.25
0.91 95.34 0.24 95.20 0.24 94.38 0.24 94.24 0.24 94.02 0.24
0.63 95.02 0.22 95.10 0.22 94.40 0.22 94.04 0.22 94.26 0.22
0.42 94.86 0.19 95.20 0.19 94.30 0.19 94.02 0.19 94.10 0.19
0.27 94.74 0.15 94.90 0.15 94.26 0.15 93.60 0.15 94.20 0.15
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Table B.1 – continued from previous page
Delta GCI BCa BP AN

n j BC3 Cov Len Cov Len Cov Len Cov Len Cov Len

250 1.23 95.12 0.16 95.17 0.16 94.94 0.16 94.88 0.16 94.86 0.16
0.91 95.02 0.15 95.17 0.15 94.84 0.15 94.66 0.15 94.86 0.15
0.63 94.68 0.14 95.07 0.14 94.78 0.14 94.72 0.14 94.68 0.14
0.42 94.90 0.12 95.13 0.12 94.52 0.12 94.28 0.12 94.58 0.15
0.27 94.68 0.10 95.07 0.10 94.46 0.10 94.52 0.09 94.60 0.10

Normal 10 1.23 92.28 0.77 96.43 0.75 91.84 0.75 90.40 0.76 89.28 0.76
σ3 = 4 0.91 92.02 0.74 96.77 0.75 93.00 0.73 90.50 0.72 87.78 0.72

0.63 91.56 0.67 96.90 0.70 92.26 0.65 88.94 0.62 86.68 0.62
0.42 90.98 0.58 96.70 0.62 91.36 0.55 86.96 0.50 85.60 0.50
0.27 90.50 0.47 96.80 0.52 89.88 0.44 84.56 0.38 85.62 0.38

50 1.23 94.36 0.36 95.70 0.35 94.78 0.36 94.22 0.35 94.00 0.36
0.91 94.12 0.34 95.53 0.34 94.86 0.34 94.52 0.34 93.90 0.34
0.63 93.98 0.31 95.77 0.31 94.62 0.31 94.06 0.30 93.64 0.31
0.42 93.60 0.27 95.90 0.27 94.24 0.27 93.50 0.26 93.28 0.26
0.27 93.26 0.21 95.73 0.22 93.88 0.21 92.82 0.20 93.32 0.20

100 1.23 95.28 0.25 95.10 0.25 94.30 0.25 94.16 0.25 93.98 0.25
0.91 95.04 0.24 95.17 0.24 94.26 0.24 94.40 0.24 94.34 0.24
0.63 94.86 0.22 95.10 0.22 94.40 0.22 94.20 0.22 94.14 0.22
0.42 94.62 0.19 95.13 0.19 94.26 0.19 94.02 0.19 94.38 0.19
0.27 94.62 0.15 95.30 0.15 94.04 0.15 93.90 0.15 94.16 0.15

250 1.23 95.14 0.16 94.87 0.16 94.72 0.16 94.78 0.16 94.96 0.16
0.91 95.06 0.15 95.07 0.15 94.90 0.15 94.86 0.15 94.98 0.15
0.63 94.90 0.14 94.97 0.14 94.86 0.14 94.70 0.14 94.72 0.14
0.42 94.76 0.12 94.93 0.12 94.80 0.12 94.58 0.12 94.90 0.12
0.27 94.68 0.10 95.13 0.10 94.74 0.10 94.74 0.09 94.82 0.10

GCI - generalized confidence interval; BCa - bias corrected and accelerated; BP - basic percentile;
AN - asymptotic normal; Cov - coverage; Len - length
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Table B.2: Coverage probability and length for 95% parametric CIs around BC under equal costs
and three classes with a non-normally distributed feature.

Delta GCI BCa BP AN

n j BC3 Cov Len Cov Len Cov Len Cov Len Cov Len

Gamma 10 1.23 88.68 0.66 92.20 0.64 89.96 0.73 90.20 0.72 79.44 0.72
0.91 88.94 0.82 95.83 0.68 90.08 0.67 88.50 0.65 78.40 0.65
0.63 89.10 0.61 96.30 0.61 90.84 0.66 88.92 0.61 83.78 0.61
0.42 91.30 0.54 97.47 0.57 89.08 0.45 84.48 0.44 80.26 0.43
0.27 94.22 0.46 98.60 0.49 89.38 0.36 85.74 0.34 86.64 0.33

50 1.23 84.90 0.30 85.50 0.30 89.90 0.34 89.66 0.34 85.32 0.34
0.91 84.60 0.31 87.67 0.31 87.38 0.31 86.08 0.31 79.34 0.31
0.63 90.32 0.28 91.93 0.28 92.58 0.30 90.90 0.30 89.96 0.30
0.42 93.98 0.25 95.93 0.25 91.80 0.23 90.50 0.22 88.56 0.22
0.27 96.92 0.21 96.60 0.21 90.96 0.18 90.84 0.17 94.10 0.17

100 1.23 81.26 0.21 81.73 0.21 88.64 0.25 87.94 0.25 83.36 0.25
0.91 78.76 0.22 79.93 0.22 82.38 0.22 80.54 0.22 73.86 0.22
0.63 89.86 0.20 90.80 0.20 93.18 0.22 91.74 0.22 90.76 0.22
0.42 94.42 0.18 94.10 0.18 92.90 0.17 92.38 0.17 90.68 0.17
0.27 96.12 0.15 94.70 0.15 89.18 0.13 90.72 0.13 94.04 0.13

250 1.23 74.04 0.13 72.63 0.13 83.92 0.16 82.98 0.16 78.64 0.16
0.91 63.38 0.14 62.83 0.14 70.50 0.14 67.62 0.14 62.14 0.14
0.63 88.92 0.12 89.17 0.12 92.76 0.14 91.84 0.14 90.96 0.14
0.42 94.32 0.11 95.07 0.11 93.70 0.11 93.14 0.11 91.78 0.11
0.27 93.38 0.09 90.87 0.09 85.62 0.08 87.24 0.08 91.20 0.08

Gamma w/ 10 1.23 92.36 0.69 95.37 0.65 91.68 0.70 92.94 0.70 84.58 0.71
Box-Cox 0.91 91.52 0.69 95.67 0.67 90.68 0.66 89.66 0.68 85.50 0.67

0.63 89.80 0.62 94.43 0.60 90.64 0.61 86.90 0.60 87.04 0.60
0.42 91.58 0.57 94.03 0.59 89.40 0.50 85.56 0.48 85.78 0.48
0.27 90.70 0.48 92.83 0.52 89.38 0.44 84.16 0.40 86.14 0.39

50 1.23 94.32 0.32 95.43 0.40 94.20 0.31 94.24 0.31 91.72 0.31
0.91 94.16 0.32 95.03 0.41 94.14 0.32 93.60 0.32 93.32 0.32
0.63 92.98 0.29 94.00 0.37 94.02 0.30 93.54 0.30 94.14 0.30
0.42 94.52 0.26 94.27 0.34 92.66 0.25 92.08 0.25 93.18 0.25
0.27 92.96 0.22 91.53 0.29 90.84 0.23 91.32 0.22 93.66 0.22

100 1.23 94.22 0.22 94.43 0.31 94.56 0.22 94.44 0.22 92.74 0.22
0.91 93.86 0.23 94.53 0.32 94.14 0.23 93.96 0.23 93.76 0.23
0.63 92.28 0.20 92.47 0.29 93.18 0.22 93.20 0.22 94.38 0.22
0.42 94.82 0.18 94.60 0.26 93.22 0.18 93.28 0.18 94.48 0.18
0.27 91.74 0.16 90.87 0.22 89.20 0.16 91.34 0.16 93.42 0.16

250 1.23 93.92 0.14 94.40 0.22 94.18 0.14 94.30 0.14 92.98 0.14
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Table B.2 – continued from previous page
Delta GCI BCa BP AN

n j BC3 Cov Len Cov Len Cov Len Cov Len Cov Len

0.91 94.36 0.14 95.23 0.23 94.86 0.15 94.78 0.15 94.78 0.15
0.63 92.40 0.13 92.80 0.20 93.80 0.14 94.10 0.14 94.74 0.14
0.42 94.58 0.12 94.07 0.18 93.62 0.12 93.66 0.12 94.56 0.12
0.27 85.76 0.10 88.13 0.16 82.72 0.10 85.56 0.10 88.52 0.10

Normal 10 1.23 87.84 2.39 93.20 0.72 86.60 0.68 87.28 0.70 79.32 0.70
Mixture 0.91 90.14 0.75 95.23 0.75 91.08 0.73 88.64 0.73 85.58 0.73

0.63 87.54 0.67 94.63 0.69 89.90 0.66 85.40 0.62 81.64 0.62
0.42 87.94 0.57 94.80 0.61 89.26 0.56 83.78 0.52 83.92 0.51
0.27 84.08 0.44 93.67 0.49 89.36 0.47 81.78 0.43 83.04 0.41

50 1.23 79.42 0.35 82.73 0.35 82.56 0.35 81.42 0.34 76.36 0.35
0.91 94.16 0.35 95.07 0.35 94.22 0.35 93.90 0.35 93.52 0.35
0.63 88.54 0.31 91.50 0.31 92.72 0.32 90.62 0.32 87.38 0.32
0.42 91.12 0.26 93.60 0.27 94.14 0.28 92.28 0.27 91.80 0.27
0.27 88.88 0.21 91.30 0.21 94.20 0.24 91.94 0.23 92.28 0.23

100 1.23 67.10 0.25 68.17 0.25 70.50 0.25 69.44 0.25 64.82 0.25
0.91 93.90 0.25 94.40 0.25 94.78 0.25 94.64 0.25 94.76 0.25
0.63 85.48 0.22 88.07 0.22 90.94 0.23 89.20 0.23 86.36 0.23
0.42 91.20 0.19 93.13 0.19 94.56 0.20 93.74 0.20 93.08 0.20
0.27 90.56 0.15 91.50 0.15 94.26 0.17 93.58 0.17 93.94 0.17

250 1.23 33.94 0.16 35.73 0.16 37.67 0.16 37.14 0.16 33.96 0.16
0.91 94.30 0.16 94.60 0.16 93.86 0.16 93.84 0.16 94.38 0.13
0.63 77.50 0.14 81.10 0.14 83.18 0.15 81.04 0.15 77.88 0.15
0.42 90.98 0.12 92.83 0.12 93.64 0.13 92.78 0.13 91.92 0.16
0.27 90.94 0.09 91.70 0.09 94.58 0.11 93.72 0.11 94.04 0.16

GCI - generalized confidence interval; BCa - bias corrected and accelerated; BP - basic percentile;
AN - asymptotic normal; Cov - coverage; Len - length
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Table B.3: Coverage probability and length for 95% parametric CIs around θ∗1 under equal costs and
three classes with a normally distributed feature.

Delta GCI BCa BP AN

n j BC3 Cov Len Cov Len Cov Len Cov Len Cov Len

Normal 10 1.23 91.40 4.95 97.20 2.42 87.6 23.4 93.54 43.0 93.08 1.87
σ3 = 1 0.91 92.50 1.04 97.10 1.40 91.24 2.44 92.36 5.52 93.04 1.06

0.63 92.04 0.91 97.30 1.14 92.74 0.97 92.56 1.07 92.24 0.95
0.42 92.20 0.94 96.70 1.10 93.32 1.02 92.74 1.00 92.40 1.00
0.27 92.26 1.03 96.07 1.14 93.32 1.13 92.68 1.09 92.48 1.11

50 1.23 93.80 0.58 95.73 0.63 92.32 0.58 92.68 1.29 93.88 0.58
0.91 94.56 0.43 95.50 0.46 93.48 0.43 93.84 0.43 94.24 0.43
0.63 94.10 0.39 94.97 0.41 94.14 0.40 94.36 0.40 94.56 0.40
0.42 94.20 0.41 94.83 0.42 94.60 0.42 94.42 0.42 94.52 0.42
0.27 94.78 0.46 95.03 0.46 94.58 0.46 94.40 0.46 94.18 0.46

100 1.23 94.58 0.41 95.10 0.42 93.56 0.41 93.64 0.40 94.58 0.41
0.91 94.76 0.30 95.37 0.31 94.14 0.30 94.38 0.30 94.60 0.30
0.63 95.08 0.28 95.37 0.28 94.28 0.28 94.46 0.28 94.32 0.28
0.42 95.12 0.29 95.30 0.29 94.40 0.29 94.24 0.29 94.16 0.29
0.27 94.92 0.32 95.27 0.32 94.40 0.32 94.28 0.32 94.16 0.32

250 1.23 94.60 0.26 94.90 0.26 94.94 0.26 94.92 0.25 95.00 0.26
0.91 95.00 0.19 95.13 0.19 94.94 0.19 94.98 0.19 94.94 0.19
0.63 94.80 0.18 94.97 0.18 94.68 0.18 94.90 0.18 94.68 0.18
0.42 95.20 0.18 95.27 0.18 94.84 0.19 94.82 0.18 94.80 0.19
0.27 95.16 0.20 95.33 0.20 94.70 0.20 94.52 0.20 94.66 0.20

Normal 10 1.23 92.22 10.0 97.20 2.42 87.58 23.4 93.54 43.0 93.08 1.87
σ3 = 2 0.91 93.28 1.23 97.10 1.40 91.24 2.44 92.36 5.52 93.04 1.06

0.63 92.86 0.91 97.30 1.14 92.74 0.97 92.56 1.07 92.24 0.95
0.42 92.32 0.94 96.70 1.10 93.32 1.02 92.74 1.00 92.40 1.00
0.27 92.22 1.03 96.07 1.14 93.32 1.13 92.68 1.09 92.48 1.11

50 1.23 93.84 0.58 95.73 0.63 92.32 0.58 92.68 1.29 93.88 0.58
0.91 94.54 0.43 95.50 0.46 93.48 0.43 93.84 0.43 94.24 0.43
0.63 94.10 0.39 94.97 0.41 94.14 0.40 94.36 0.40 94.56 0.40
0.42 94.18 0.41 94.83 0.42 94.60 0.42 94.42 0.42 94.52 0.42
0.27 94.24 0.46 95.03 0.46 94.58 0.46 94.40 0.46 94.18 0.46

100 1.23 94.66 0.41 95.10 0.42 93.56 0.41 93.64 0.40 94.58 0.41
0.91 95.04 0.30 95.37 0.31 94.14 0.30 94.38 0.30 94.60 0.30
0.63 95.08 0.28 95.37 0.28 94.28 0.28 94.46 0.28 94.32 0.28
0.42 95.14 0.29 95.30 0.29 94.40 0.29 94.24 0.29 94.16 0.29
0.27 94.92 0.32 95.27 0.32 94.40 0.32 94.28 0.32 94.16 0.32

250 1.23 94.58 0.26 94.90 0.26 94.94 0.26 94.92 0.25 95.00 0.26
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Table B.3 – continued from previous page
Delta GCI BCa BP AN

n j BC3 Cov Len Cov Len Cov Len Cov Len Cov Len

0.91 94.64 0.19 95.13 0.19 94.94 0.19 94.98 0.19 94.94 0.19
0.63 94.80 0.18 94.97 0.18 94.68 0.18 94.90 0.18 94.68 0.18
0.42 95.20 0.18 95.27 0.18 94.84 0.19 94.82 0.18 94.80 0.19
0.27 95.18 0.20 95.33 0.20 94.70 0.20 94.52 0.20 94.66 0.20

Normal 10 1.23 92.14 11.3 97.20 2.42 87.58 23.4 93.54 43.0 93.08 1.87
σ3 = 4 0.91 93.28 1.24 97.10 1.40 91.24 2.44 92.36 5.52 93.04 1.06

0.63 92.86 0.91 97.30 1.14 92.74 0.97 92.56 1.07 92.24 0.95
0.42 92.36 0.94 96.70 1.10 93.32 1.02 92.74 1.00 92.40 1.00
0.27 92.22 1.03 96.07 1.14 93.32 1.13 92.68 1.09 92.48 1.11

50 1.23 93.84 0.58 95.73 0.63 92.32 0.58 92.68 1.29 93.88 0.58
0.91 94.54 0.43 95.50 0.46 93.48 0.43 93.84 0.43 94.24 0.43
0.63 94.10 0.39 94.97 0.41 94.14 0.40 94.36 0.40 94.56 0.40
0.42 94.20 0.41 94.83 0.42 94.60 0.42 94.42 0.42 94.52 0.42
0.27 94.24 0.46 95.03 0.46 94.58 0.46 94.40 0.46 94.18 0.46

100 1.23 94.68 0.41 95.10 0.42 93.56 0.41 93.64 0.40 94.58 0.41
0.91 95.04 0.30 95.37 0.31 94.14 0.30 94.38 0.30 94.60 0.30
0.63 95.08 0.28 95.37 0.28 94.28 0.28 94.46 0.28 94.32 0.28
0.42 95.12 0.29 95.30 0.29 94.40 0.29 94.24 0.29 94.16 0.29
0.27 94.92 0.32 95.27 0.32 94.40 0.32 94.28 0.32 94.16 0.32

250 1.23 94.60 0.26 94.90 0.26 94.94 0.26 94.92 0.25 95.00 0.26
0.91 94.64 0.19 95.13 0.19 94.94 0.19 94.98 0.19 94.94 0.19
0.63 94.80 0.18 94.97 0.18 94.68 0.18 94.90 0.18 94.68 0.18
0.42 95.20 0.18 95.27 0.18 94.84 0.19 94.82 0.18 94.80 0.19
0.27 95.18 0.20 95.33 0.20 94.70 0.20 94.52 0.20 94.66 0.20

GCI - generalized confidence interval; BCa - bias corrected and accelerated; BP - basic percentile;
AN - asymptotic normal; Cov - coverage; Len - length
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Table B.4: Coverage probability and length for 95% parametric CIs around θ∗2 under equal costs and
three classes with a normally distributed feature.

Delta GCI BCa BP AN

n j BC3 Cov Len Cov Len Cov Len Cov Len Cov Len

Normal 10 1.23 91.52 1.85 97.00 2.46 87.92 43.7 93.38 20.7 92.56 1.90
σ3 = 1 0.91 92.42 1.09 96.73 1.40 91.10 1.28 92.24 3.16 92.56 1.06

0.63 92.32 0.91 96.33 1.14 92.76 0.97 92.74 1.11 92.42 0.95
0.42 92.36 0.94 95.80 1.09 93.56 1.02 92.96 0.99 92.48 1.01
0.27 92.48 1.03 95.53 1.13 94.00 1.13 92.92 1.09 92.34 1.11

50 1.23 93.96 0.58 95.97 0.64 92.34 0.58 92.74 0.62 94.28 0.58
0.91 94.60 0.43 95.57 0.46 93.56 0.43 93.92 0.43 94.58 0.43
0.63 94.74 0.39 95.23 0.41 94.72 0.40 94.78 0.40 94.68 0.40
0.42 94.58 0.41 94.83 0.42 94.72 0.42 94.66 0.42 94.42 0.42
0.27 94.16 0.46 94.47 0.46 94.62 0.46 94.36 0.46 94.20 0.46

100 1.23 94.46 0.41 95.13 0.42 93.22 0.41 93.48 0.40 94.26 0.40
0.91 94.80 0.30 95.70 0.31 94.10 0.30 94.40 0.30 94.58 0.30
0.63 94.94 0.28 95.03 0.28 94.42 0.28 94.54 0.28 94.56 0.28
0.42 95.00 0.29 94.93 0.29 94.68 0.29 94.84 0.29 94.76 0.29
0.27 95.18 0.32 95.00 0.32 95.14 0.32 95.10 0.32 95.08 0.32

250 1.23 95.40 0.26 95.20 0.26 94.34 0.26 94.66 0.26 94.84 0.26
0.91 94.90 0.19 95.27 0.19 94.70 0.19 94.86 0.19 94.92 0.19
0.63 95.20 0.18 95.20 0.18 95.08 0.18 95.20 0.18 95.38 0.18
0.42 95.12 0.18 95.40 0.18 95.20 0.19 95.20 0.18 95.22 0.18
0.27 94.88 0.20 95.33 0.20 94.92 0.20 94.96 0.20 94.96 0.20

Normal 10 1.23 91.54 17.0 96.43 2.88 89.24 179 92.20 80.3 88.28 2.26
σ3 = 2 0.91 92.26 9.82 96.67 1.76 90.24 1.85 91.36 5.81 89.02 1.37

0.63 92.64 3.53 96.27 1.49 91.74 1.31 91.58 1.89 90.34 1.27
0.42 92.24 2.18 95.80 1.47 92.58 1.38 92.20 1.34 91.14 1.35
0.27 92.14 1.41 95.23 1.55 93.42 1.54 92.28 1.48 92.06 1.50

50 1.23 94.22 0.66 95.27 0.69 92.84 0.67 93.38 0.67 92.78 0.66
0.91 94.28 0.57 95.20 0.59 93.16 0.58 93.04 0.57 92.98 0.57
0.63 94.18 0.55 94.53 0.56 93.86 0.55 93.82 0.54 93.52 0.55
0.42 94.48 0.57 94.53 0.58 94.14 0.57 93.92 0.57 93.68 0.57
0.27 94.62 0.62 94.60 0.63 93.82 0.63 93.86 0.62 93.58 0.62

100 1.23 95.06 0.47 94.97 0.47 93.76 0.47 93.60 0.46 93.24 0.46
0.91 95.16 0.41 95.07 0.41 93.90 0.41 94.00 0.40 93.44 0.40
0.63 95.20 0.39 94.90 0.39 94.58 0.39 94.24 0.39 94.14 0.39
0.42 95.26 0.40 94.73 0.41 94.80 0.40 94.64 0.40 94.72 0.40
0.27 95.34 0.44 94.93 0.44 95.26 0.44 95.10 0.44 95.14 0.44

250 1.23 94.82 0.29 95.50 0.30 94.88 0.30 94.88 0.29 94.98 0.29
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Table B.4 – continued from previous page
Delta GCI BCa BP AN

n j BC3 Cov Len Cov Len Cov Len Cov Len Cov Len

0.91 94.86 0.26 95.33 0.26 95.24 0.26 95.16 0.26 95.20 0.26
0.63 95.18 0.24 94.83 0.25 95.22 0.25 95.14 0.24 95.20 0.25
0.42 95.24 0.25 95.07 0.25 95.50 0.25 95.28 0.25 95.08 0.25
0.27 95.08 0.28 94.73 0.28 95.20 0.28 95.04 0.28 94.96 0.28

Normal 10 1.23 91.10 24.7 96.10 2.35 89.30 14.7 90.66 11.4 84.70 1.95
σ3 = 4 0.91 91.46 6.41 95.97 1.92 89.00 2.14 89.66 2.58 84.64 1.55

0.63 92.06 1.59 95.93 1.84 90.30 1.65 90.16 1.69 87.00 1.54
0.42 92.14 1.65 96.10 1.89 91.66 1.75 91.04 1.67 88.94 1.66
0.27 92.24 1.79 95.60 2.02 92.86 1.95 91.96 1.84 90.04 1.85

50 1.23 94.32 0.75 95.23 0.78 92.96 0.76 92.90 0.74 92.14 0.74
0.91 93.80 0.71 95.13 0.73 92.86 0.71 93.00 0.69 91.84 0.70
0.63 94.18 0.71 94.97 0.72 93.12 0.70 93.46 0.69 92.42 0.69
0.42 94.20 0.73 95.03 0.75 93.30 0.73 93.28 0.72 92.84 0.72
0.27 94.34 0.78 95.07 0.80 93.48 0.79 93.50 0.77 93.00 0.78

100 1.23 94.60 0.53 94.60 0.54 94.08 0.54 93.38 0.53 92.56 0.53
0.91 95.00 0.50 94.93 0.51 94.00 0.51 93.56 0.50 92.98 0.50
0.63 95.28 0.50 95.00 0.50 94.18 0.50 93.92 0.49 94.00 0.50
0.42 95.32 0.52 94.93 0.52 94.30 0.52 94.64 0.51 94.22 0.51
0.27 95.32 0.55 94.87 0.56 94.86 0.56 94.94 0.55 94.78 0.55

250 1.23 95.06 0.34 95.43 0.34 94.96 0.34 94.82 0.34 94.68 0.34
0.91 94.82 0.32 95.83 0.32 94.94 0.32 94.88 0.32 94.66 0.32
0.63 95.16 0.32 95.00 0.32 94.66 0.32 94.76 0.31 94.78 0.32
0.42 95.22 0.33 94.90 0.33 94.82 0.33 94.80 0.32 94.56 0.33
0.27 95.10 0.35 94.60 0.35 94.58 0.35 94.88 0.35 94.60 0.35

GCI - generalized confidence interval; BCa - bias corrected and accelerated; BP - basic percentile;
AN - asymptotic normal; Cov - coverage; Len - length
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Table B.5: Coverage probability and length for 95% parametric CIs around θ∗1 under equal costs and
three classes with a non-normally distributed feature.

Delta GCI BCa BP AN

n j BC3 Cov Len Cov Len Cov Len Cov Len Cov Len

Gamma 10 1.23 54.30 1.67 65.33 2.76 55.14 1.77 53.56 1.80 83.40 1.78
0.91 55.28 4.66 65.33 2.76 55.14 1.77 53.56 1.80 83.40 1.78
0.63 55.44 1.76 64.50 2.84 55.26 1.81 53.84 1.84 83.58 1.81
0.42 72.24 1.87 74.67 2.18 81.78 2.48 80.20 2.45 85.88 2.38
0.27 72.18 1.87 74.67 2.18 81.78 2.48 80.20 2.45 85.88 2.38

50 1.23 1.58 0.71 2.37 0.75 1.94 0.94 1.64 0.91 6.88 0.92
0.91 1.58 0.71 2.37 0.75 1.94 0.94 1.64 0.91 6.88 0.92
0.63 1.58 0.71 1.97 0.74 2.08 0.93 1.80 0.91 7.02 0.91
0.42 37.30 0.87 33.10 0.89 56.52 1.43 62.30 1.37 74.84 1.37
0.27 37.28 0.87 33.10 0.89 56.52 1.43 62.30 1.37 74.84 1.37

100 1.23 0.00 0.49 0.07 0.50 0.28 0.67 0.06 0.64 0.48 0.64
0.91 0.00 0.49 0.07 0.50 0.28 0.67 0.06 0.64 0.48 0.64
0.63 0.08 0.49 0.03 0.50 0.18 0.67 0.08 0.64 0.48 0.64
0.42 15.88 0.62 14.53 0.62 30.18 1.06 37.08 1.02 45.58 1.02
0.27 15.92 0.62 14.53 0.62 30.18 1.06 37.08 1.02 45.58 1.02

250 1.23 0.00 0.31 0.00 0.31 0.00 0.42 0.00 0.41 0.00 0.41
0.91 0.00 0.31 0.00 0.31 0.00 0.42 0.00 0.41 0.00 0.41
0.63 0.00 0.31 0.00 0.31 0.00 0.42 0.00 0.41 0.00 0.41
0.42 1.00 0.39 0.73 0.39 4.16 0.70 6.38 0.68 8.10 0.68
0.27 1.10 0.39 0.73 0.39 4.16 0.70 6.38 0.68 8.10 0.68

Gamma w/ 10 1.23 89.02 2.11 95.10 63.7 88.90 1.62 87.68 1.65 93.50 1.64
Box-Cox 0.91 84.24 3.13 94.77 122 84.64 1.52 82.14 1.63 91.56 1.62

0.63 78.60 242 91.47 567 78.18 1.43 74.60 1.64 89.60 1.63
0.42 91.12 2.19 95.93 2.59 91.64 2.39 88.96 2.38 91.40 2.38
0.27 89.10 2.17 94.57 2.55 89.84 2.35 86.00 2.42 90.74 2.41

50 1.23 94.06 0.73 94.93 0.79 93.94 0.75 92.88 0.74 94.18 0.74
0.91 73.76 0.68 75.60 0.73 71.58 0.69 65.70 0.69 75.70 0.70
0.63 37.12 0.60 40.90 0.66 33.72 0.63 28.64 0.65 43.46 0.65
0.42 86.80 0.94 87.67 0.97 88.82 1.00 85.58 1.00 89.24 1.00
0.27 73.68 0.92 74.30 0.95 74.98 0.99 70.62 0.99 79.46 1.00

100 1.23 94.12 0.51 94.97 0.53 94.26 0.52 93.74 0.51 94.38 0.52
0.91 53.18 0.47 57.20 0.49 52.32 0.48 46.16 0.47 55.18 0.48
0.63 10.20 0.43 10.13 0.44 10.04 0.43 7.44 0.44 13.26 0.44
0.42 79.14 0.66 79.27 0.67 81.88 0.71 79.00 0.71 82.44 0.71
0.27 53.36 0.65 51.47 0.66 56.88 0.70 53.04 0.70 60.14 0.70

250 1.23 93.32 0.32 93.67 0.33 93.88 0.32 92.80 0.32 93.76 0.32
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Table B.5 – continued from previous page
Delta GCI BCa BP AN

n j BC3 Cov Len Cov Len Cov Len Cov Len Cov Len

0.91 15.38 0.30 16.27 0.30 15.40 0.30 12.74 0.29 16.22 0.30
0.63 0.10 0.27 0.17 0.27 0.20 0.26 0.10 0.26 0.22 0.27
0.42 57.02 0.42 57.07 0.42 61.22 0.45 58.58 0.45 61.94 0.45
0.27 15.76 0.41 15.10 0.41 18.26 0.44 16.74 0.44 19.82 0.44

Normal 10 1.23 87.10 1.28 95.37 6.03 91.80 1.46 89.46 1.48 87.48 1.42
Mixture 0.91 87.02 1.28 95.97 1.85 91.80 1.46 89.46 1.48 87.48 1.42

0.63 87.02 1.28 94.13 1.47 91.80 1.46 89.46 1.48 87.48 1.42
0.42 90.96 1.32 94.13 1.47 89.00 1.99 90.50 5.14 88.74 1.35
0.27 89.56 90.2 94.13 1.47 85.88 159 94.10 381 90.50 5.27

50 1.23 76.34 0.56 90.40 0.97 78.20 0.56 76.34 0.56 74.38 0.56
0.91 76.34 0.56 93.33 0.59 78.20 0.56 76.34 0.56 74.36 0.56
0.63 76.34 0.56 80.93 0.57 78.20 0.56 76.34 0.56 74.36 0.56
0.42 91.10 0.57 80.93 0.57 90.80 0.57 90.04 0.55 89.08 0.56
0.27 92.30 0.84 80.93 0.57 90.64 1.06 93.20 4.68 93.42 0.99

100 1.23 57.86 0.39 87.13 0.59 60.10 0.39 58.00 0.39 55.64 0.39
0.91 57.86 0.39 90.67 0.41 60.10 0.39 58.00 0.39 55.64 0.39
0.63 57.86 0.39 61.93 0.40 60.10 0.39 58.00 0.39 55.64 0.39
0.42 89.64 0.40 61.93 0.40 89.34 0.40 87.90 0.40 87.26 0.40
0.27 88.00 0.57 61.93 0.40 87.80 0.61 88.90 0.63 90.76 0.61

250 1.23 20.26 0.25 75.53 0.36 21.92 0.25 20.32 0.24 19.66 0.25
0.91 20.26 0.25 84.27 0.26 21.92 0.25 20.32 0.24 19.66 0.25
0.63 20.26 0.25 21.77 0.25 21.92 0.25 20.32 0.24 19.66 0.25
0.42 83.08 0.25 21.77 0.25 84.82 0.25 82.66 0.25 82.12 0.25
0.27 77.98 0.35 21.77 0.25 78.30 0.38 78.96 0.37 82.56 0.38

GCI - generalized confidence interval; BCa - bias corrected and accelerated; BP - basic percentile;
AN - asymptotic normal; Cov - coverage; Len - length
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Table B.6: Coverage probability and length for 95% parametric CIs around θ∗2 under equal costs and
three classes with a non-normally distributed feature.

Delta GCI BCa BP AN

n j BC3 Cov Len Cov Len Cov Len Cov Len Cov Len

Gamma 10 1.23 66.20 3.67 78.17 6.95 58.90 3.03 58.22 3.17 85.56 3.17
0.91 71.68 2.92 75.93 3.44 76.18 3.62 75.60 3.58 87.80 3.52
0.63 70.54 4.49 82.67 5.10 79.32 5.82 76.02 5.60 73.00 5.48
0.42 79.64 7.73 82.70 8.92 84.58 9.66 83.42 9.47 88.34 9.37
0.27 74.26 11.7 83.27 13.3 81.34 15.0 78.50 14.4 75.52 14.1

50 1.23 11.74 1.47 15.10 1.60 14.22 1.70 11.50 1.71 26.92 1.73
0.91 16.02 1.33 15.03 1.36 24.64 1.92 28.68 1.86 41.76 1.86
0.63 61.82 2.00 65.10 2.04 77.92 2.91 74.80 2.83 71.58 2.81
0.42 46.80 3.52 43.23 3.59 59.20 4.82 62.96 4.72 74.24 4.73
0.27 66.76 5.20 72.20 5.32 82.02 7.40 78.60 7.20 75.80 7.17

100 1.23 1.64 1.02 2.13 1.06 4.24 1.18 2.30 1.18 6.82 1.19
0.91 2.00 0.95 2.07 0.96 4.94 1.41 6.54 1.37 9.88 1.37
0.63 49.78 1.41 54.30 1.43 75.16 2.16 70.12 2.10 67.40 2.10
0.42 21.84 2.49 20.50 2.52 33.64 3.52 38.20 3.46 47.04 3.46
0.27 57.92 3.68 61.13 3.71 79.58 5.44 75.06 5.29 72.74 5.29

250 1.23 0.00 0.63 0.00 0.64 0.08 0.73 0.02 0.72 0.10 0.72
0.91 0.00 0.60 0.00 0.60 0.02 0.91 0.04 0.90 0.04 0.90
0.63 27.62 0.90 30.00 0.90 57.86 1.41 51.14 1.37 49.56 1.38
0.42 1.94 1.58 1.77 1.59 4.96 2.29 6.00 2.26 7.58 2.26
0.27 39.44 2.33 42.33 2.34 67.82 3.55 61.84 3.48 59.84 3.49

Gamma 10 1.23 89.58 3.65 92.60 999 84.64 2.85 85.46 3.03 92.92 3.02
w/ Box-Cox 0.91 88.90 3.06 95.07 3.89 90.44 3.33 87.54 3.35 91.80 3.35

0.63 90.02 6.92 93.30 7.14 90.84 7.41 92.56 7.63 87.66 7.63
0.42 91.32 8.27 95.23 9.61 92.16 9.02 90.68 9.03 91.94 9.07
0.27 90.92 17.3 94.77 18.0 92.32 18.6 92.32 18.7 90.56 18.8

50 1.23 94.76 1.42 95.13 1.56 93.42 1.42 92.98 1.41 94.64 1.42
0.91 78.50 1.31 79.50 1.36 81.14 1.42 78.84 1.42 81.94 1.42
0.63 88.38 3.00 90.40 3.00 89.94 3.07 91.30 3.09 87.54 3.10
0.42 90.76 3.63 91.93 3.70 90.72 3.79 89.84 3.78 91.94 3.80
0.27 92.00 7.50 93.00 7.51 91.70 7.55 93.08 7.58 90.82 7.61

100 1.23 94.06 1.00 95.03 1.05 93.20 0.99 92.56 0.99 93.98 0.99
0.91 64.18 0.93 66.17 0.94 68.18 1.01 66.26 1.00 68.76 1.01
0.63 84.88 2.11 86.93 2.11 87.02 2.17 88.42 2.18 84.46 2.18
0.42 86.44 2.56 86.23 2.58 87.32 2.67 86.06 2.66 88.54 2.68
0.27 89.60 5.28 90.43 5.29 90.26 5.37 91.26 5.37 89.04 5.39

250 1.23 93.70 0.63 94.20 0.64 93.24 0.62 92.90 0.62 93.38 0.62
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Table B.6 – continued from previous page
Delta GCI BCa BP AN

n j BC3 Cov Len Cov Len Cov Len Cov Len Cov Len

0.91 31.34 0.58 34.57 0.59 35.56 0.63 34.16 0.63 35.74 0.63
0.63 75.20 1.33 75.07 1.33 77.96 1.38 79.12 1.38 75.46 1.38
0.42 74.76 1.62 74.57 1.62 76.52 1.69 75.28 1.68 77.96 1.69
0.27 84.10 3.34 83.50 3.34 85.40 3.41 86.48 3.40 83.86 3.42

Normal 10 1.23 92.32 1.22 96.77 1.55 92.10 1.36 92.58 2.47 90.04 1.26
Mixture 0.91 92.22 1.22 96.77 1.55 92.10 1.36 92.58 2.47 90.04 1.26

0.63 92.16 1.13 95.97 1.40 92.22 1.21 91.94 1.54 91.70 1.18
0.42 92.52 1.23 94.70 1.37 92.30 1.35 92.68 1.30 91.94 1.32
0.27 91.78 2.08 95.20 2.01 92.22 2.07 90.00 1.98 90.46 2.03

50 1.23 95.68 0.52 95.07 0.54 94.52 0.52 94.66 0.51 94.12 0.51
0.91 95.68 0.52 95.07 0.54 94.52 0.52 94.66 0.51 94.12 0.51
0.63 92.16 0.49 90.97 0.51 90.32 0.49 90.58 0.49 92.18 0.49
0.42 88.16 0.55 88.50 0.55 87.24 0.55 87.88 0.54 89.44 0.54
0.27 91.52 0.86 91.73 0.87 90.26 0.82 88.88 0.81 88.44 0.82

100 1.23 95.54 0.37 95.70 0.37 94.88 0.36 94.78 0.36 94.88 0.36
0.91 95.52 0.37 95.70 0.37 94.88 0.36 94.78 0.36 94.88 0.36
0.63 87.54 0.35 86.80 0.35 85.44 0.35 86.06 0.34 88.14 0.35
0.42 82.02 0.38 79.90 0.39 78.58 0.38 79.72 0.38 81.76 0.38
0.27 86.82 0.61 88.23 0.61 85.70 0.58 84.46 0.57 83.88 0.58

250 1.23 95.40 0.23 95.73 0.23 94.96 0.23 94.80 0.23 95.00 0.23
0.91 95.40 0.23 95.73 0.23 94.96 0.23 94.80 0.23 95.00 0.23
0.63 74.44 0.22 72.87 0.22 72.24 0.22 72.94 0.22 75.40 0.22
0.42 59.00 0.24 58.47 0.24 56.84 0.24 58.06 0.24 60.10 0.24
0.27 74.10 0.38 76.23 0.38 72.88 0.37 71.42 0.36 70.72 0.37

GCI - generalized confidence interval; BCa - bias corrected and accelerated; BP - basic percentile;
AN - asymptotic normal; Cov - coverage; Len - length

167



Table B.7: Coverage probability and length for 95% parametric CIs around BC under unequal costs
and and three classes with a normally distributed feature.

Delta GCI BCa BP AN

n j BC3 Cov Len Cov Len Cov Len Cov Len Cov Len

Cost1 10 0.45 91.10 0.31 96.73 0.31 91.78 0.30 89.84 0.30 87.54 0.30
0.31 93.04 0.27 95.60 0.28 91.48 0.26 90.66 0.25 86.88 0.25
0.21 92.18 0.23 96.27 0.24 90.90 0.22 88.66 0.21 86.26 0.20
0.14 90.84 0.19 95.37 0.21 90.40 0.19 86.10 0.17 85.12 0.16
0.09 89.94 0.16 94.87 0.18 89.94 0.16 83.90 0.13 85.26 0.12

50 0.45 94.50 0.14 95.37 0.14 95.14 0.14 94.46 0.14 93.54 0.14
0.31 94.68 0.12 94.97 0.12 94.42 0.12 94.72 0.12 93.72 0.12
0.21 94.64 0.10 94.90 0.10 94.30 0.10 94.08 0.10 93.16 0.10
0.14 94.08 0.09 94.80 0.09 94.14 0.09 93.34 0.08 93.24 0.08
0.09 93.56 0.07 95.07 0.07 94.00 0.07 92.64 0.07 93.20 0.07

100 0.45 95.16 0.10 95.07 0.10 94.60 0.10 94.20 0.10 94.06 0.10
0.31 95.20 0.08 94.37 0.08 94.42 0.09 94.54 0.08 93.94 0.08
0.21 95.00 0.07 94.80 0.07 94.38 0.07 94.12 0.07 93.94 0.07
0.14 94.74 0.06 95.07 0.06 94.14 0.06 93.72 0.06 93.90 0.06
0.09 94.70 0.05 95.10 0.05 94.14 0.05 93.80 0.05 93.60 0.05

250 0.45 94.92 0.06 94.83 0.06 95.12 0.06 95.06 0.06 94.96 0.06
0.31 94.74 0.05 94.43 0.05 94.80 0.05 94.64 0.05 94.84 0.05
0.21 94.78 0.05 94.43 0.05 94.82 0.05 94.32 0.05 94.52 0.05
0.14 94.78 0.04 95.27 0.04 94.54 0.04 94.28 0.04 94.60 0.04
0.09 94.68 0.03 94.97 0.03 94.36 0.03 94.24 0.03 94.52 0.03

Cost2 10 0.89 91.46 0.63 95.13 0.61 91.26 0.59 89.16 0.61 85.76 0.60
0.66 91.90 0.60 96.63 0.60 92.30 0.58 88.90 0.56 85.24 0.56
0.46 91.04 0.53 96.50 0.55 90.80 0.54 87.50 0.48 83.92 0.48
0.31 90.02 0.45 96.40 0.48 90.46 0.47 85.32 0.39 83.54 0.38
0.20 89.00 0.36 95.97 0.41 89.54 0.39 83.02 0.30 83.46 0.29

50 0.89 94.18 0.29 94.77 0.29 94.02 0.29 93.74 0.29 93.24 0.29
0.66 94.28 0.27 96.00 0.27 94.14 0.27 93.82 0.27 93.16 0.27
0.46 94.18 0.24 95.57 0.24 94.02 0.24 93.20 0.24 92.94 0.24
0.31 93.84 0.21 95.17 0.21 93.84 0.21 92.76 0.20 92.82 0.20
0.20 93.28 0.17 94.70 0.17 93.58 0.17 92.30 0.16 92.76 0.16

100 0.89 94.86 0.21 94.47 0.21 93.94 0.21 93.90 0.21 93.66 0.21
0.66 94.78 0.19 95.10 0.19 94.20 0.19 93.98 0.19 93.92 0.19
0.46 94.60 0.17 94.70 0.17 94.20 0.17 93.82 0.17 93.62 0.17
0.31 94.26 0.15 95.00 0.15 94.54 0.15 93.66 0.14 93.58 0.14
0.20 93.88 0.12 95.00 0.12 94.32 0.12 93.54 0.11 93.74 0.11

250 0.89 94.62 0.13 94.93 0.13 95.02 0.13 94.92 0.13 94.56 0.13

Continued on next page

168



Table B.7 – continued from previous page
Delta GCI BCa BP AN

n j BC3 Cov Len Cov Len Cov Len Cov Len Cov Len

0.66 94.68 0.12 95.00 0.12 94.80 0.12 94.74 0.12 94.36 0.12
0.46 94.58 0.11 95.13 0.11 94.68 0.11 94.56 0.11 94.36 0.11
0.31 94.74 0.09 94.77 0.09 94.56 0.09 94.54 0.09 94.50 0.09
0.20 94.70 0.07 95.00 0.07 94.70 0.08 94.48 0.07 94.56 0.07

GCI - generalized confidence interval; BCa - bias corrected and accelerated; BP - basic percentile;
AN - asymptotic normal; Cov - coverage; Len - length
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Table B.8: Coverage probability and length for 95% parametric CIs around θ∗1 under unequal costs
and three classes with a normally distributed feature.

Delta GCI BCa BP AN

n j BC3 Cov Len Cov Len Cov Len Cov Len Cov Len

Cost1 10 0.45 91.28 52.0 97.00 4.33 90.08 6.75 94.74 4.78 92.68 2.38
0.31 93.42 0.93 96.73 1.44 92.24 1.23 93.82 1.22 93.84 0.99
0.21 93.04 0.89 97.13 1.10 93.00 0.95 93.62 0.95 92.52 0.93
0.14 92.30 0.93 95.43 1.07 93.40 1.01 92.92 0.99 92.48 1.00
0.09 92.26 1.02 96.07 1.13 93.34 1.12 92.80 1.09 92.52 1.10

50 0.45 94.04 0.49 95.73 0.54 93.36 0.52 93.30 0.53 93.22 0.50
0.31 95.02 0.40 95.50 0.41 93.80 0.40 93.90 0.39 94.22 0.40
0.21 94.38 0.39 94.90 0.40 94.14 0.39 94.24 0.39 94.44 0.39
0.14 94.10 0.41 94.57 0.42 94.50 0.42 94.38 0.41 94.60 0.42
0.09 94.22 0.46 95.23 0.46 94.62 0.46 94.38 0.46 94.18 0.46

100 0.45 94.80 0.35 94.90 0.36 94.16 0.35 94.16 0.34 94.42 0.35
0.31 94.98 0.28 95.10 0.29 94.82 0.28 94.82 0.28 94.96 0.28
0.21 95.02 0.27 95.20 0.28 94.28 0.27 94.36 0.27 94.32 0.27
0.14 95.14 0.29 95.57 0.29 94.40 0.29 94.24 0.29 94.16 0.29
0.09 94.92 0.32 94.87 0.32 94.38 0.32 94.28 0.32 94.14 0.32

250 0.45 94.72 0.22 94.47 0.22 94.76 0.22 94.68 0.22 94.84 0.22
0.31 94.64 0.18 95.83 0.18 94.78 0.18 94.96 0.18 94.86 0.18
0.21 94.62 0.17 95.30 0.17 94.72 0.17 94.78 0.17 94.74 0.17
0.14 95.18 0.18 94.43 0.18 94.88 0.18 94.88 0.18 94.78 0.18
0.09 95.14 0.20 95.17 0.20 94.70 0.20 94.54 0.20 94.66 0.20

Cost2 10 0.89 87.90 446 96.43 8.79 88.80 11.5 87.44 8.16 89.38 5.23
0.66 92.22 49.5 96.97 5.26 89.94 4.94 93.26 3.56 89.48 2.89
0.46 93.56 7.47 96.37 2.96 90.94 2.52 93.96 1.94 90.28 1.64
0.31 93.04 3.13 97.10 1.81 92.32 1.46 93.74 1.30 90.84 1.16
0.20 92.26 1.09 96.23 1.36 92.84 1.22 92.84 1.18 91.56 1.14

50 0.89 93.78 15.9 95.60 2.63 94.18 2.97 94.70 2.69 93.30 2.27
0.66 94.02 0.52 95.23 0.58 93.36 0.61 94.40 0.60 93.00 0.55
0.46 93.96 0.45 94.73 0.47 93.24 0.46 93.42 0.45 93.34 0.45
0.31 94.34 0.45 94.83 0.46 93.42 0.45 93.46 0.45 93.36 0.45
0.20 94.12 0.48 95.07 0.49 93.60 0.48 93.42 0.48 93.56 0.48

100 0.89 95.08 0.59 94.83 1.10 94.60 1.23 96.02 1.28 94.16 1.03
0.66 94.88 0.37 95.03 0.38 93.84 0.37 94.74 0.37 94.18 0.37
0.46 94.78 0.32 94.60 0.33 94.26 0.32 94.66 0.32 94.54 0.32
0.31 95.04 0.32 95.40 0.32 94.22 0.32 94.42 0.32 94.34 0.32
0.20 95.18 0.34 95.53 0.34 94.00 0.34 94.06 0.34 94.04 0.34

250 0.89 94.98 0.34 94.93 0.36 95.22 0.37 96.24 0.38 95.14 0.36

Continued on next page
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Table B.8 – continued from previous page
Delta GCI BCa BP AN

n j BC3 Cov Len Cov Len Cov Len Cov Len Cov Len

0.66 94.86 0.23 94.43 0.23 94.84 0.23 95.38 0.23 95.08 0.23
0.46 95.04 0.20 94.90 0.20 94.64 0.20 94.50 0.20 94.34 0.20
0.31 95.38 0.20 94.93 0.20 94.40 0.20 94.42 0.20 94.32 0.20
0.20 95.54 0.22 94.70 0.22 94.36 0.22 94.32 0.21 94.34 0.22

GCI - generalized confidence interval; BCa - bias corrected and accelerated; BP - basic percentile;
AN - asymptotic normal; Cov - coverage; Len - length
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Table B.9: Coverage probability and length for 95% parametric CIs around θ∗2 under unequal costs
and three classes with a normally distributed feature.

Delta GCI BCa BP AN

n j BC3 Cov Len Cov Len Cov Len Cov Len Cov Len

Cost1 10 0.45 91.54 28.4 97.23 4.56 89.86 7.97 94.54 5.61 91.88 2.55
0.31 93.44 0.93 97.23 1.50 91.82 1.35 94.02 1.35 93.02 1.03
0.21 92.86 0.89 97.17 1.10 93.18 0.97 93.76 0.97 92.96 0.94
0.14 92.70 0.93 95.53 1.07 93.74 1.02 93.22 1.00 92.60 1.00
0.09 92.66 1.03 96.40 1.13 93.84 1.12 93.10 1.10 92.42 1.11

50 0.45 94.30 0.49 95.73 0.53 93.22 0.53 93.56 0.53 93.32 0.50
0.31 94.62 0.40 95.50 0.42 93.96 0.40 94.02 0.39 94.42 0.40
0.21 94.66 0.39 94.90 0.40 94.46 0.39 94.68 0.39 94.58 0.39
0.14 94.60 0.41 94.57 0.42 94.76 0.42 94.58 0.41 94.50 0.42
0.09 94.52 0.46 95.23 0.46 94.64 0.46 94.36 0.46 94.20 0.46

100 0.45 94.88 0.35 94.90 0.36 93.54 0.35 93.40 0.34 93.82 0.35
0.31 95.08 0.28 95.10 0.29 94.40 0.28 94.54 0.28 94.62 0.28
0.21 95.00 0.27 95.20 0.28 94.48 0.27 94.72 0.27 94.74 0.27
0.14 94.98 0.29 95.57 0.29 94.64 0.29 94.80 0.29 94.78 0.29
0.09 95.20 0.32 94.87 0.32 95.12 0.32 95.08 0.32 95.12 0.32

250 0.45 94.86 0.22 94.47 0.22 94.44 0.22 94.56 0.22 94.76 0.22
0.31 95.56 0.18 95.83 0.18 94.98 0.18 94.94 0.18 95.12 0.18
0.21 95.42 0.17 95.30 0.17 94.90 0.17 95.04 0.17 95.24 0.17
0.14 95.18 0.18 94.43 0.18 95.12 0.18 95.14 0.18 95.28 0.18
0.09 94.84 0.20 95.17 0.20 94.92 0.20 94.96 0.20 94.96 0.20

Cost2 10 0.89 92.40 21.6 98.03 2.95 87.92 3.64 95.64 3.43 93.98 2.17
0.66 93.22 5.80 97.43 1.61 91.66 1.32 94.66 1.51 93.64 1.28
0.46 92.70 1.71 96.57 1.20 93.28 1.07 94.34 1.16 93.18 1.03
0.31 92.64 0.94 96.00 1.10 93.90 1.06 93.94 1.10 92.74 1.04
0.27 92.60 1.03 95.67 1.14 94.04 1.14 93.42 1.15 92.40 1.12

50 0.89 93.98 0.58 95.57 0.63 92.34 0.58 92.78 0.58 94.28 0.58
0.66 94.68 0.43 96.57 0.46 93.56 0.43 93.92 0.43 94.58 0.43
0.46 94.76 0.39 94.93 0.41 94.72 0.40 94.78 0.40 94.68 0.40
0.31 94.58 0.41 94.73 0.42 94.72 0.42 94.66 0.42 94.42 0.42
0.27 94.50 0.46 95.07 0.46 94.62 0.46 94.36 0.46 94.20 0.46

100 0.89 95.10 0.41 95.40 0.42 93.22 0.41 93.48 0.40 94.26 0.40
0.66 94.84 0.30 95.20 0.31 94.10 0.30 94.40 0.30 94.58 0.30
0.46 94.94 0.28 94.63 0.28 94.42 0.28 94.54 0.28 94.56 0.28
0.31 95.00 0.29 95.53 0.29 94.68 0.29 94.84 0.29 94.76 0.29
0.27 95.18 0.32 94.50 0.32 95.14 0.32 95.10 0.32 95.08 0.32

250 0.89 95.40 0.26 95.03 0.26 94.34 0.26 94.66 0.26 94.84 0.26

Continued on next page
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Table B.9 – continued from previous page
Delta GCI BCa BP AN

n j BC3 Cov Len Cov Len Cov Len Cov Len Cov Len

0.66 95.52 0.19 94.87 0.19 94.70 0.19 94.86 0.19 94.92 0.19
0.46 95.20 0.18 94.90 0.18 95.08 0.18 95.20 0.18 95.38 0.18
0.31 95.12 0.18 95.47 0.18 95.20 0.19 95.20 0.18 95.22 0.18
0.27 94.88 0.20 94.93 0.20 94.92 0.20 94.96 0.20 94.96 0.20

GCI - generalized confidence interval; BCa - bias corrected and accelerated; BP - basic percentile;
AN - asymptotic normal; Cov - coverage; Len - length
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B.2 Additional CI performance results from Chapter 4

Table B.10: Simulation coverage probability and length for the nonparametric bootstrapped 95% CI

around BC2 for two classes with a normally distributed feature when all ci| j p j = 1, for i , j .

n1 n2 BC2 Coverage Length

5 5 0.6 90.30 0.47
0.4 63.60 0.35
0.2 0.00 0.17
0.1 0.00 0.06

6 9 0.6 91.47 0.45
0.4 84.90 0.35
0.2 0.00 0.18
0.1 0.00 0.07

10 10 0.6 92.93 0.48
0.4 94.80 0.39
0.2 7.40 0.22
0.1 0.00 0.10

12 18 0.6 90.27 0.42
0.4 93.63 0.35
0.2 73.47 0.22
0.1 0.00 0.11

20 20 0.6 91.33 0.42
0.4 94.83 0.35
0.2 90.5 0.24
0.1 0.00 0.13

22 28 0.6 87.10 0.35
0.4 91.97 0.30
0.2 91.60 0.20
0.1 1.63 0.12

30 30 0.6 92.47 0.37
0.4 95.43 0.32
0.2 95.37 0.22
0.1 69.70 0.14
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Appendix C: R Code
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C.1 R Code
C.1.1 Delta Method 95% CIs .

1 #IMPUTS TO CHANGE##
p1<−#SET P r e v e l a n c e C l a s s 1

3 p2<−#SET P r e v e l a n c e C l a s s 2
p3<−#SET P r e v e l a n c e C l a s s 3

5 w21<−#SET COST 2 | 1
w31<−#SET COST 3 | 1

7 w12<−#SET COST 1 | 2
w32<−#SET COST 3 | 2

9 w13<−#SET COST 1 | 3
w23<−#SET COST 2 | 3

11 s t a r t<−c ( − . 1 , 0 )
L<−c (−1000 ,−1000)

13 U<−c ( 1 0 0 0 , 1 0 0 0 )
nx<−#SIZE C l a s s 1

15 ny<−#SIZE C l a s s 2
nz<−#SIZE C l a s s 3

17 X<−# Ve c t o r o f Va lues f o r C l a s s 1
Y<−# Ve c t o r o f Va lues f o r C l a s s 2

19 Z<−# Ve c t o r o f Va lues f o r C l a s s 3
gmu1<−mean (X)

21 gmu2<−mean (Y)
gmu3<−mean ( Z )

23 g s i g 1<−sd (X)
g s i g 2<−sd (Y)

25 g s i g 3<−sd ( Z )
f<− f u n c t i o n ( p a r ) { ( pnorm ( p a r [ 2 ] , gmu1 , g s i g 1 )−pnorm ( p a r [ 1 ] , gmu1 , g s i g 1 ) ) * ( p1*w21 )+

27 (1−pnorm ( p a r [ 2 ] , gmu1 , g s i g 1 ) ) * ( p1*w31 )+

( pnorm ( p a r [ 1 ] , gmu2 , g s i g 2 ) ) * ( p2*w12 )+

29 (1−pnorm ( p a r [ 2 ] , gmu2 , g s i g 2 ) ) * ( p2*w32 )+

( pnorm ( p a r [ 1 ] , gmu3 , g s i g 3 ) ) * ( p3*w13 )+

31 ( pnorm ( p a r [ 2 ] , gmu3 , g s i g 3 )−pnorm ( p a r [ 1 ] , gmu3 , g s i g 3 ) ) * ( p3*w23 ) }
x<−nlminb ( s t a r t , f , l ower = L , upper = U)

33 c1<−x$ p a r [ 1 ]
c2<−x$ p a r [ 2 ]

35 EBC<−x$ o b j e c t i v e
##ESTIMATE PARTIALS FOR THETA

37 g<− f u n c t i o n ( p a r ) { ( pnorm ( p a r [ 2 ] , mux , s i g x )−pnorm ( p a r [ 1 ] , mux , s i g x ) ) * ( p1*w21 )+

(1−pnorm ( p a r [ 2 ] , mux , s i g x ) ) * ( p1*w31 )+

39 ( pnorm ( p a r [ 1 ] , muy , s i g y ) ) * ( p2*w12 )+

(1−pnorm ( p a r [ 2 ] , muy , s i g y ) ) * ( p2*w32 )+

41 ( pnorm ( p a r [ 1 ] , muz , s i g z ) ) * ( p3*w13 )+

( pnorm ( p a r [ 2 ] , muz , s i g z )−pnorm ( p a r [ 1 ] , muz , s i g z ) ) * ( p3*w23 ) }
43 # P a r t i a l f o r The ta 1 & 2 wr t Mean 1

# s t a r t w i th + e p p s i l o n
45 mux<−gmu1+ .0001

muy<−gmu2
47 muz<−gmu3

s i g x<−g s i g 1
49 s i g y<−g s i g 2

s i g z<−g s i g 3
51 x<−nlminb ( s t a r t , g , l ower = L , upper = U)

o1p<−x$ p a r [ 1 ]
53 o2p<−x$ p a r [ 2 ]

#now − e p p s i l o n

176



55 mux<−gmu1− .0001
muy<−gmu2

57 muz<−gmu3
s i g x<−g s i g 1

59 s i g y<−g s i g 2
s i g z<−g s i g 3

61 x<−nlminb ( s t a r t , g , l ower = L , upper = U)
o1m<−x$ p a r [ 1 ]

63 o2m<−x$ p a r [ 2 ]
# Calc P a r t i a l

65 dc1m1<− ( o1p−o1m ) / . 0002
dc2m1<− ( o2p−o2m ) / . 0002

67 # P a r t i a l f o r The ta 1 & 2 wr t Mean 2
# s t a r t w i th + e p p s i l o n

69 mux<−gmu1
muy<−gmu2+ .0001

71 muz<−gmu3
s i g x<−g s i g 1

73 s i g y<−g s i g 2
s i g z<−g s i g 3

75 x<−nlminb ( s t a r t , g , l ower = L , upper = U)
o1p<−x$ p a r [ 1 ]

77 o2p<−x$ p a r [ 2 ]
#now − e p p s i l o n

79 mux<−gmu1
muy<−gmu2− .0001

81 muz<−gmu3
s i g x<−g s i g 1

83 s i g y<−g s i g 2
s i g z<−g s i g 3

85 x<−nlminb ( s t a r t , g , l ower = L , upper = U)
o1m<−x$ p a r [ 1 ]

87 o2m<−x$ p a r [ 2 ]
# Calc P a r t i a l

89 dc1m2<− ( o1p−o1m ) / . 0002
dc2m2<− ( o2p−o2m ) / . 0002

91 # P a r t i a l f o r The ta 1 & 2 wr t Mean 3
# s t a r t w i th + e p p s i l o n

93 mux<−gmu1
muy<−gmu2

95 muz<−gmu3+ .0001
s i g x<−g s i g 1

97 s i g y<−g s i g 2
s i g z<−g s i g 3

99 x<−nlminb ( s t a r t , g , l ower = L , upper = U)
o1p<−x$ p a r [ 1 ]

101 o2p<−x$ p a r [ 2 ]
#now − e p p s i l o n

103 mux<−gmu1
muy<−gmu2

105 muz<−gmu3− .0001
s i g x<−g s i g 1

107 s i g y<−g s i g 2
s i g z<−g s i g 3

109 x<−nlminb ( s t a r t , g , l ower = L , upper = U)
o1m<−x$ p a r [ 1 ]

111 o2m<−x$ p a r [ 2 ]
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# Calc P a r t i a l
113 dc1m3<− ( o1p−o1m ) / . 0002

dc2m3<− ( o2p−o2m ) / . 0002
115 # P a r t i a l f o r The ta 1 & 2 wr t Sigma 1

# s t a r t w i th + e p p s i l o n
117 mux<−gmu1

muy<−gmu2
119 muz<−gmu3

s i g x<−g s i g 1 + .0001
121 s i g y<−g s i g 2

s i g z<−g s i g 3
123 x<−nlminb ( s t a r t , g , l ower = L , upper = U)

o1p<−x$ p a r [ 1 ]
125 o2p<−x$ p a r [ 2 ]

#now − e p p s i l o n
127 mux<−gmu1

muy<−gmu2
129 muz<−gmu3

s i g x<−gs ig1 − .0001
131 s i g y<−g s i g 2

s i g z<−g s i g 3
133 x<−nlminb ( s t a r t , g , l ower = L , upper = U)

o1m<−x$ p a r [ 1 ]
135 o2m<−x$ p a r [ 2 ]

# Calc P a r t i a l
137 dc1s1<− ( o1p−o1m ) / . 0002

dc2s1<− ( o2p−o2m ) / . 0002
139 # P a r t i a l f o r The ta 1 & 2 wr t Sigma 2

# s t a r t w i th + e p p s i l o n
141 mux<−gmu1

muy<−gmu2
143 muz<−gmu3

s i g x<−g s i g 1
145 s i g y<−g s i g 2 + .0001

s i g z<−g s i g 3
147 x<−nlminb ( s t a r t , g , l ower = L , upper = U)

o1p<−x$ p a r [ 1 ]
149 o2p<−x$ p a r [ 2 ]

#now − e p p s i l o n
151 mux<−gmu1

muy<−gmu2
153 muz<−gmu3

s i g x<−g s i g 1
155 s i g y<−gs ig2 − .0001

s i g z<−g s i g 3
157 x<−nlminb ( s t a r t , g , l ower = L , upper = U)

o1m<−x$ p a r [ 1 ]
159 o2m<−x$ p a r [ 2 ]

# Calc P a r t i a l
161 dc1s2<− ( o1p−o1m ) / . 0002

dc2s2<− ( o2p−o2m ) / . 0002
163 # P a r t i a l f o r The ta 1 & 2 wr t Sigma 3

# s t a r t w i th + e p p s i l o n
165 mux<−gmu1

muy<−gmu2
167 muz<−gmu3

s i g x<−g s i g 1
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169 s i g y<−g s i g 2
s i g z<−g s i g 3 + .0001

171 x<−nlminb ( s t a r t , g , l ower = L , upper = U)
o1p<−x$ p a r [ 1 ]

173 o2p<−x$ p a r [ 2 ]
#now − e p p s i l o n

175 mux<−gmu1
muy<−gmu2

177 muz<−gmu3
s i g x<−g s i g 1

179 s i g y<−g s i g 2
s i g z<−gs ig3 − .0001

181 x<−nlminb ( s t a r t , g , l ower = L , upper = U)
o1m<−x$ p a r [ 1 ]

183 o2m<−x$ p a r [ 2 ]
# Calc P a r t i a l

185 dc1s3<− ( o1p−o1m ) / . 0002
dc2s3<− ( o2p−o2m ) / . 0002

187 ## c a l c p a r t i a l o f BC f u n c t i o n wr t Mean 1 , i n t h r e e p a r t s
dp1<− (1 / g s i g 1 ) * ( ( dc2m1−1) *dnorm ( ( c2−gmu1 ) / g s i g 1 ) * ( w21*p1−w31*p1 )−w21*p1*dnorm ( (

c1−gmu1 ) / g s i g 1 ) * ( dc1m1−1) )
189 dp2<− (1 / g s i g 2 ) * ( w12*p2*dnorm ( ( c1−gmu2 ) / g s i g 2 ) *dc1m1+w32*p2*dnorm ( ( gmu2−c2 ) / g s i g 2

) *(−dc2m1 ) )
dp3<− (1 / g s i g 3 ) * ( ( dc1m1 ) *dnorm ( ( c1−gmu3 ) / g s i g 3 ) * ( w13*p3−w23*p3 )+w23*p3*dnorm ( ( c2−

gmu3 ) / g s i g 3 ) *dc2m1 )
191 dbcm1<−dp1+dp2+dp3

## c a l c p a r t i a l o f BC f u n c t i o n wr t Mean 2 , i n t h r e e p a r t s
193 dp1<− (1 / g s i g 1 ) * ( ( dc2m2 ) *dnorm ( ( c2−gmu1 ) / g s i g 1 ) * ( w21*p1−w31*p1 )−w21*p1*dnorm ( ( c1−

gmu1 ) / g s i g 1 ) *dc1m2 )
dp2<− (1 / g s i g 2 ) * ( w12*p2*dnorm ( ( c1−gmu2 ) / g s i g 2 ) * ( dc1m2−1)+w32*p2*dnorm ( ( gmu2−c2 ) /

g s i g 2 ) *(1−dc2m2 ) )
195 dp3<− (1 / g s i g 3 ) * ( dc1m2*dnorm ( ( c1−gmu3 ) / g s i g 3 ) * ( w13*p3−w23*p3 )+w23*p3*dnorm ( ( c2−

gmu3 ) / g s i g 3 ) *dc2m2 )
dbcm2<−dp1+dp2+dp3

197 ## c a l c p a r t i a l o f BC f u n c t i o n wr t Mean 3 , i n t h r e e p a r t s
dp1<− (1 / g s i g 1 ) * ( dc2m3*dnorm ( ( c2−gmu1 ) / g s i g 1 ) * ( w21*p1−w31*p1 )−w21*p1*dnorm ( ( c1−

gmu1 ) / g s i g 1 ) *dc1m3 )
199 dp2<− (1 / g s i g 2 ) * ( w12*p2*dnorm ( ( c1−gmu2 ) / g s i g 2 ) *dc1m3+w32*p2*dnorm ( ( gmu2−c2 ) / g s i g 2

) *(−dc2m3 ) )
dp3<− (1 / g s i g 3 ) * ( ( dc1m3−1) *dnorm ( ( c1−gmu3 ) / g s i g 3 ) * ( w13*p3−w23*p3 )+w23*p3*dnorm ( (

c2−gmu3 ) / g s i g 3 ) * ( dc2m3−1) )
201 dbcm3<−dp1+dp2+dp3

## c a l c p a r t i a l o f BC f u n c t i o n wr t Sigma 1 , i n t h r e e p a r t s
203 dp1<− (1 / g s i g 1 ) * ( dnorm ( ( c2−gmu1 ) / g s i g 1 ) * ( w21*p1* ( dc2s1 − ( ( c2−gmu1 ) / g s i g 1 ) )+w31*p1*

(− dc2s1 − ( ( gmu1−c2 ) / g s i g 1 ) ) )
−w21*p1*dnorm ( ( c1−gmu1 ) / g s i g 1 ) * ( dc1s1 − ( ( c1−gmu1 ) / g s i g 1 ) ) )

205 dp2<− (1 / g s i g 2 ) * ( w12*p2*dnorm ( ( c1−gmu2 ) / g s i g 2 ) * dc1s1−w32*p2*dnorm ( ( gmu2−c2 ) / g s i g 2
) * dc2s1 )

dp3<− (1 / g s i g 3 ) * ( dnorm ( ( c1−gmu3 ) / g s i g 3 ) * dc1s1 * ( w13*p3−w23*p3 )+w23*p3*dnorm ( ( c2−
gmu3 ) / g s i g 3 ) * dc2s1 )

207 dbcs1<−dp1+dp2+dp3
## c a l c p a r t i a l o f BC f u n c t i o n wr t Sigma 2 , i n t h r e e p a r t s

209 dp1<− (1 / g s i g 1 ) * ( dnorm ( ( c2−gmu1 ) / g s i g 1 ) * dc2s2 * ( w21*p1−w31*p1 )−w21*p1*dnorm ( ( c1−
gmu1 ) / g s i g 1 ) * dc1s2 )

dp2<− (1 / g s i g 2 ) * ( w12*p2*dnorm ( ( c1−gmu2 ) / g s i g 2 ) * ( dc1s2 − ( ( c1−gmu2 ) / g s i g 2 ) )+

211 w32*p2*dnorm ( ( gmu2−c2 ) / g s i g 2 ) *(− dc2s2 − ( ( gmu2−c2 ) / g s i g 2 ) ) )
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dp3<− (1 / g s i g 3 ) * ( dnorm ( ( c1−gmu3 ) / g s i g 3 ) * dc1s2 * ( w13*p3−w23*p3 )+w23*p3*dnorm ( ( c2−
gmu3 ) / g s i g 3 ) * dc2s2 )

213 dbcs2<−dp1+dp2+dp3
## c a l c p a r t i a l o f BC f u n c t i o n wr t Sigma 3 , i n t h r e e p a r t s

215 dp1<− (1 / g s i g 1 ) * ( dnorm ( ( c2−gmu1 ) / g s i g 1 ) * dc2s3 * ( w21*p1−w31*p1 )−w21*p1*dnorm ( ( c1−
gmu1 ) / g s i g 1 ) * dc1s3 )

dp2<− (1 / g s i g 2 ) * ( w12*p2*dnorm ( ( c1−gmu2 ) / g s i g 2 ) * dc1s3+w32*p2*dnorm ( ( gmu2−c2 ) / g s i g 2
) *(− dc2s3 ) )

217 dp3<− (1 / g s i g 3 ) * ( dnorm ( ( c1−gmu3 ) / g s i g 3 ) * ( dc1s3 − ( ( c1−gmu3 ) / g s i g 3 ) ) * ( w13*p3−w23*p3 )
+

w23*p3*dnorm ( ( c2−gmu3 ) / g s i g 3 ) * ( dc2s3 − ( ( c2−gmu3 ) / g s i g 3 ) ) )
219 dbcs3<−dp1+dp2+dp3

# Calc V a r i a n c e s o f P a r a m e t e r s
221 # v a r o f mean

vm1<− ( g s i g 1 ˆ 2 ) / nx
223 vm2<− ( g s i g 2 ˆ 2 ) / ny

vm3<− ( g s i g 3 ˆ 2 ) / nz
225 # v a r o f s igma

vs1<− ( g s i g 1 ˆ 2 ) / (2 * ( nx−1) )
227 vs2<− ( g s i g 2 ˆ 2 ) / (2 * ( ny−1) )

vs3<− ( g s i g 3 ˆ 2 ) / (2 * ( nz −1) )
229 # Calc V a r i a n c e o f Bayes Cos t

VBC<− ( dbcm1 ˆ 2 ) *vm1+( dbcs1 ˆ 2 ) * vs1+

231 ( dbcm2 ˆ 2 ) *vm2+( dbcs2 ˆ 2 ) * vs2+

( dbcm3 ˆ 2 ) *vm3+( dbcs3 ˆ 2 ) * vs3
233 # Calc V a r i a n c e o f T h r e s h o l d 1

VC1<− ( dc1m1 ˆ 2 ) *vm1+( dc1s1 ˆ 2 ) * vs1+

235 ( dc1m2 ˆ 2 ) *vm2+( dc1s2 ˆ 2 ) * vs2+

( dc1m3 ˆ 2 ) *vm3+( dc1s3 ˆ 2 ) * vs3
237 # Calc V a r i a n c e o f T h r e s h o l d 2

VC2<− ( dc2m1 ˆ 2 ) *vm1+( dc2s1 ˆ 2 ) * vs1+

239 ( dc2m2 ˆ 2 ) *vm2+( dc2s2 ˆ 2 ) * vs2+

( dc2m3 ˆ 2 ) *vm3+( dc2s3 ˆ 2 ) * vs3
241 ##CI r e s u l t s

LBC1<−c1 −1.96 * s q r t (VC1)
243 UBC1<−c1 +1.96 * s q r t (VC1)

LBC2<−c2 −1.96 * s q r t (VC2)
245 UBC2<−c2 +1.96 * s q r t (VC2)

LBBC<−EBC−1.96 * s q r t (VBC)
247 UBBC<−EBC+1.96 * s q r t (VBC)

C.1.2 Generalized 95% CIs .
1 #IMPUTS TO CHANGE##

p1<−#SET P r e v e l a n c e C l a s s 1
3 p2<−#SET P r e v e l a n c e C l a s s 2

p3<−#SET P r e v e l a n c e C l a s s 3
5 w21<−#SET COST 2 | 1

w31<−#SET COST 3 | 1
7 w12<−#SET COST 1 | 2

w32<−#SET COST 3 | 2
9 w13<−#SET COST 1 | 3

w23<−#SET COST 2 | 3
11 nx<−#SIZE C l a s s 1

ny<−#SIZE C l a s s 2
13 nz<−#SIZE C l a s s 3

X<−# Ve c t o r o f Va lues f o r C l a s s 1
15 Y<−# Ve c t o r o f Va lues f o r C l a s s 2
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Z<−# Ve c t o r o f Va lues f o r C l a s s 3
17 K<−1500 # Change i f d e s i r e K o t h e r t h a n 1500

## C a l c u l a t i o n s , Do n o t change
19 s t a r t<−c ( − . 1 , 0 )

L<−c (−1000 ,−1000)
21 U<−c ( 1 0 0 0 , 1 0 0 0 )

yba r1<−mean (X)
23 yba r2<−mean (Y)

yba r3<−mean ( Z )
25 va r1<−v a r (X)

va r2<−v a r (Y)
27 va r3<−v a r ( Z )

## C r e a t e P i v o t a l Q u a n t i l e f o r each Mean , and Var
29 t 1<− r t (K, nx−1)

t 2<− r t (K, ny−1)
31 t 3<− r t (K, nz −1)

V1<− r c h i s q (K, nx−1)
33 V2<− r c h i s q (K, ny−1)

V3<− r c h i s q (K, nz −1)
35 Rs1<−c ( r e p ( ( nx−1) * var1 ,K) ) / V1

Rs2<−c ( r e p ( ( ny−1) * var2 ,K) ) / V2
37 Rs3<−c ( r e p ( ( nz −1) * var3 ,K) ) / V3

Rm1<−c ( r e p ( ybar1 ,K) ) −( t 1 * ( s q r t ( va r1 / nx ) ) )
39 Rm2<−c ( r e p ( ybar2 ,K) ) −( t 2 * ( s q r t ( va r2 / ny ) ) )

Rm3<−c ( r e p ( ybar3 ,K) ) −( t 3 * ( s q r t ( va r3 / nz ) ) )
41 # Find K BC and Opt . T h r e s h o l d v a l u e s u s i n g Numer ica l M i n i m i z a t i o n

BC<−c ( r e p ( −9999 ,K) )
43 C1<−c ( r e p ( −9999 ,K) )

C2<−c ( r e p ( −9999 ,K) )
45 f o r ( i i n 1 :K) {

h<− f u n c t i o n ( p a r ) { ( pnorm ( p a r [ 2 ] , Rm1[ i ] , s q r t ( Rs1 [ i ] ) )−pnorm ( p a r [ 1 ] , Rm1[ i ] , s q r t ( Rs1
[ i ] ) ) ) * ( p1*w21 )+

47 (1−pnorm ( p a r [ 2 ] , Rm1[ i ] , s q r t ( Rs1 [ i ] ) ) ) * ( p1*w31 )+

( pnorm ( p a r [ 1 ] , Rm2[ i ] , s q r t ( Rs2 [ i ] ) ) ) * ( p2*w12 )+

49 (1−pnorm ( p a r [ 2 ] , Rm2[ i ] , s q r t ( Rs2 [ i ] ) ) ) * ( p2*w32 )+

( pnorm ( p a r [ 1 ] , Rm3[ i ] , s q r t ( Rs3 [ i ] ) ) ) * ( p3*w13 )+

51 ( pnorm ( p a r [ 2 ] , Rm3[ i ] , s q r t ( Rs3 [ i ] ) )−pnorm ( p a r [ 1 ] , Rm3[ i ] , s q r t ( Rs3 [ i ] ) ) ) * ( p3*w23 ) }
s o l s<−opt im ( s t a r t , h , l ower = L , upper = U, method=”L−BFGS−B” )

53 BC[ i ]<− s o l s $ v a l u e
C1 [ i ]<− s o l s $ p a r [ 1 ]

55 C2 [ i ]<− s o l s $ p a r [ 2 ]
}

57 # CI R e s u l t s
LBC1<− q u a n t i l e ( C1 , . 0 2 5 )

59 UBC1<− q u a n t i l e ( C1 , . 9 7 5 )
LBC2<− q u a n t i l e ( C2 , . 0 2 5 )

61 UBC2<− q u a n t i l e ( C2 , . 9 7 5 )
LBBC<− q u a n t i l e (BC, . 0 2 5 )

63 UBBC<− q u a n t i l e (BC, . 9 7 5 )

C.1.3 Fiducial 95% CI for BC with Equal Weights.
1 ##INPUTS f o r Se tup ##

n1<−# Sample S i z e C l a s s 1
3 n2<−# Sample S i z e C l a s s 1

n3<−# Sample S i z e C l a s s 1
5 BChat<−# E s t i m a t e d BC

###Do n o t Change
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7 g<−c ( 1 , 0 , 1 , 0 , 1 , 0 )
Umat<−c (1 / n1 , 0 , 1 / n2 , 0 , 1 / n3 , 0 )

9 BChat<−round ( BChat , 5 )
row =( n1 +1) *2

11 s s=m a t r i x ( seq ( from =0 , t o=row−1 , by =1) , n c o l =2)
s s [ , 2 ] = n1− s s [ , 1 ]

13 s s 1<− s s [ , 1 : 2 ]
row =( n2 +1) *2

15 s s=m a t r i x ( seq ( from =0 , t o=row−1 , by =1) , n c o l =2)
s s [ , 2 ] = n2− s s [ , 1 ]

17 s s 2<− s s [ , 1 : 2 ]
row =( n3 +1) *2

19 s s=m a t r i x ( seq ( from =0 , t o=row−1 , by =1) , n c o l =2)
s s [ , 2 ] = n3− s s [ , 1 ]

21 s s 3<− s s [ , 1 : 2 ]
LEN<− l e n g t h ( s s 1 [ , 1 ] ) * l e n g t h ( s s 2 [ , 1 ] ) * l e n g t h ( s s 3 [ , 1 ] )

23 l e n 1<− l e n g t h ( s s 1 [ , 1 ] )
l e n 2<− l e n g t h ( s s 2 [ , 1 ] )

25 l e n 3<− l e n g t h ( s s 3 [ , 1 ] )
v1<−c ( r e p ( 1 , l e n 2 * l e n 3 ) )

27 c o l 1<−k r o n e c k e r ( ss1 , v1 )
v2<−c ( r e p ( 1 , l e n 1 ) )

29 v3<−c ( r e p ( 1 , l e n 3 ) )
c o l 2<−k r o n e c k e r ( v2 , k r o n e c k e r ( ss2 , v3 ) )

31 v4<−c ( r e p ( 1 , l e n 1 * l e n 2 ) )
c o l 3<−k r o n e c k e r ( v4 , s s 3 )

33 SS<−m a t r i x ( c b i n d ( co l1 , co l2 , c o l 3 ) , n c o l =6)
U1<−SS [ , 1 : 6 ]%*%Umat

35 U1<−round ( U1 , 5 )
SS<−c b i n d ( SS , U1 )

37 temp<−d a t a . f rame ( SS )
SSOR<−temp [ o r d e r ( temp [ , 7 ] ) , ]

39 ##CREATE P r o b a b i l i t y SAMPLE SPACES
##by . 1 , SSP1

41 pvec<−seq ( from =0 , t o =1 , by = . 1 )
l e n<− l e n g t h ( pvec )

43 v1<−c ( r e p ( 1 , l e n * l e n ) )
c o l 1<−k r o n e c k e r ( pvec , v1 )

45 v2<−c ( r e p ( 1 , l e n ) )
c o l 2<−k r o n e c k e r ( v2 , k r o n e c k e r ( pvec , v2 ) )

47 c o l 3<−k r o n e c k e r ( v2 , k r o n e c k e r ( v2 , pvec ) )
c12<−c (1− c o l 1 )

49 c22<−c (1− c o l 2 )
c32<−c (1− c o l 3 )

51 SSP1<−c b i n d ( co l1 , c12 , co l2 , c22 , co l3 , c32 )
##by . 0 5 , SSP2

53 pvec<−seq ( from =0 , t o =1 , by = . 0 5 )
l e n<− l e n g t h ( pvec )

55 v1<−c ( r e p ( 1 , l e n * l e n ) )
c o l 1<−k r o n e c k e r ( pvec , v1 )

57 v2<−c ( r e p ( 1 , l e n ) )
c o l 2<−k r o n e c k e r ( v2 , k r o n e c k e r ( pvec , v2 ) )

59 c o l 3<−k r o n e c k e r ( v2 , k r o n e c k e r ( v2 , pvec ) )
c12<−c (1− c o l 1 )

61 c22<−c (1− c o l 2 )
c32<−c (1− c o l 3 )

63 SSP2<−c b i n d ( co l1 , c12 , co l2 , c22 , co l3 , c32 )
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##by . 0 1 , SSP3
65 pvec<−seq ( from =0 , t o =1 , by = . 0 1 )

l e n<− l e n g t h ( pvec )
67 v1<−c ( r e p ( 1 , l e n * l e n ) )

c o l 1<−k r o n e c k e r ( pvec , v1 )
69 v2<−c ( r e p ( 1 , l e n ) )

c o l 2<−k r o n e c k e r ( v2 , k r o n e c k e r ( pvec , v2 ) )
71 c o l 3<−k r o n e c k e r ( v2 , k r o n e c k e r ( v2 , pvec ) )

c12<−c (1− c o l 1 )
73 c22<−c (1− c o l 2 )

c32<−c (1− c o l 3 )
75 SSP3<−c b i n d ( co l1 , c12 , co l2 , c22 , co l3 , c32 )

##by . 0 0 5 , SSP4
77 pvec<−seq ( from =0 , t o =1 , by = . 0 0 5 )

l e n<− l e n g t h ( pvec )
79 v1<−c ( r e p ( 1 , l e n * l e n ) )

c o l 1<−k r o n e c k e r ( pvec , v1 )
81 v2<−c ( r e p ( 1 , l e n ) )

c o l 2<−k r o n e c k e r ( v2 , k r o n e c k e r ( pvec , v2 ) )
83 c o l 3<−k r o n e c k e r ( v2 , k r o n e c k e r ( v2 , pvec ) )

c12<−c (1− c o l 1 )
85 c22<−c (1− c o l 2 )

c32<−c (1− c o l 3 )
87 SSP4<−c b i n d ( co l1 , c12 , co l2 , c22 , co l3 , c32 )

end<− l e n g t h (SSOR [ , 1 ] )
89 ## De f i n e P a r t i a l CDFS

f1<− f u n c t i o n ( p ) {
91 f a c t o r i a l ( n1 ) * f a c t o r i a l ( n2 ) * f a c t o r i a l ( n3 ) *sum ( ( ( p [ 1 ] ˆ ( SSOR [ ( UBound+1) : end , 1 ] ) ) /

f a c t o r i a l (SSOR [ ( UBound+1) : end , 1 ] ) ) * ( ( p [ 2 ] ˆ ( SSOR [ ( UBound+1) : end , 2 ] ) ) /

f a c t o r i a l (SSOR [ ( UBound+1) : end , 2 ] ) ) *
( ( p [ 3 ] ˆ ( SSOR [ ( UBound+1) : end , 3 ] ) ) / f a c t o r i a l (SSOR [ ( UBound+1) : end , 3 ] ) ) * ( ( p [ 4 ] ˆ ( SSOR

[ ( UBound+1) : end , 4 ] ) ) / f a c t o r i a l (SSOR [ ( UBound+1) : end , 4 ] ) ) *
93 ( ( p [ 5 ] ˆ ( SSOR [ ( UBound+1) : end , 5 ] ) ) / f a c t o r i a l (SSOR [ ( UBound+1) : end , 5 ] ) ) * ( ( p [ 6 ] ˆ ( SSOR

[ ( UBound+1) : end , 6 ] ) ) / f a c t o r i a l (SSOR [ ( UBound+1) : end , 6 ] ) ) )
}

95 f2<− f u n c t i o n ( p ) {
f a c t o r i a l ( n1 ) * f a c t o r i a l ( n2 ) * f a c t o r i a l ( n3 ) *sum ( ( ( p [ 1 ] ˆ ( SSOR[ LBound : UBound , 1 ] ) ) /

f a c t o r i a l (SSOR[ LBound : UBound , 1 ] ) ) * ( ( p [ 2 ] ˆ ( SSOR[ LBound : UBound , 2 ] ) ) / f a c t o r i a l (
SSOR[ LBound : UBound , 2 ] ) ) *

97 ( ( p [ 3 ] ˆ ( SSOR[ LBound : UBound , 3 ] ) ) / f a c t o r i a l (SSOR[ LBound : UBound , 3 ] ) ) * ( ( p [ 4 ] ˆ ( SSOR[
LBound : UBound , 4 ] ) ) / f a c t o r i a l (SSOR[ LBound : UBound , 4 ] ) ) *

( ( p [ 5 ] ˆ ( SSOR[ LBound : UBound , 5 ] ) ) / f a c t o r i a l (SSOR[ LBound : UBound , 5 ] ) ) * ( ( p [ 6 ] ˆ ( SSOR[
LBound : UBound , 6 ] ) ) / f a c t o r i a l (SSOR[ LBound : UBound , 6 ] ) ) )

99 }

BCmatch<−which (SSOR[ ,7]== BChat [ 1 ] )
101 LBound<−min ( BCmatch )

UBound<−max ( BCmatch )
103 ## Find S o l u t i o n 1 s t I t e r a t i o n ####

BCOUT1<−a p p l y ( SSP1 , 1 , FUN = f1 )
105 BCOUT2<−a p p l y ( SSP1 , 1 , FUN = f2 )

BCL<−BCOUT1+BCOUT2
107 BCU<−c ( r e p ( 1 , l e n g t h (BCOUT1) ) )−BCOUT1

BC<−SSP1%*%g
109 BC<−round (BC, 5 )

b l a h 2<−c b i n d ( SSP1 ,BCU, BC)
111 BCcdf<−un iq ue (BC)

BCcdf<−c b i n d ( BCcdf , r e p ( −999 , l e n g t h ( BCcdf ) ) )

183



113 f o r ( i i n 1 : l e n g t h ( BCcdf [ , 1 ] ) ) {
BCcdf [ i , 2 ]<−max ( b l a h 2 [ which ( b l a h 2 [ ,8 ]== BCcdf [ i , 1 ] ) , 7 ] )

115 }

#GET UB
117 temp<−max ( BCcdf [ which ( BCcdf [ , 2 ] <=0 . 0 2 5 ) , 2 ] )

UB<−min ( BCcdf [ which ( BCcdf [ ,2 ]== temp ) , 1 ] )
119 #GET LB

BC<−SSP1%*%g
121 BC<−round (BC, 5 )

b l a h 2<−c b i n d ( SSP1 , BCL, BC)
123 BCcdf<−un iq ue (BC)

BCcdf<−c b i n d ( BCcdf , r e p ( −999 , l e n g t h ( BCcdf ) ) )
125 f o r ( i i n 1 : l e n g t h ( BCcdf [ , 1 ] ) ) {

BCcdf [ i , 2 ]<−max ( b l a h 2 [ which ( b l a h 2 [ ,8 ]== BCcdf [ i , 1 ] ) , 7 ] )
127 }

temp<−max ( BCcdf [ which ( BCcdf [ , 2 ] <=0 . 0 2 5 ) , 2 ] )
129 LB<−max ( BCcdf [ which ( BCcdf [ ,2 ]== temp ) , 1 ] )

## R e f i n e i n on S o l u t i o n 1 s t t ime
131 BC<−SSP2%*%g

BC<−round (BC, 5 )
133 SSPtemp<−c b i n d ( SSP2 , BC)

SSPn<−SSP2 [ which ( SSPtemp [ ,7 ] <= (UB+ . 2 )&SSPtemp [ ,7 ] >= (UB− . 2 ) ) , ]
135 BCOUT1<−a p p l y ( SSPn , 1 , FUN = f1 )

BCU<−c ( r e p ( 1 , l e n g t h (BCOUT1) ) )−BCOUT1
137 BC<−SSPn%*%g

BC<−round (BC, 5 )
139 b l a h 2<−c b i n d ( SSPn ,BCU, BC)

BCcdf<−un iq ue (BC)
141 BCcdf<−c b i n d ( BCcdf , r e p ( −999 , l e n g t h ( BCcdf ) ) )

f o r ( i i n 1 : l e n g t h ( BCcdf [ , 1 ] ) ) {
143 BCcdf [ i , 2 ]<−max ( b l a h 2 [ which ( b l a h 2 [ ,8 ]== BCcdf [ i , 1 ] ) , 7 ] )
}

145 #GET UB
temp<−max ( BCcdf [ which ( BCcdf [ , 2 ] <=0 . 0 2 5 ) , 2 ] )

147 UB<−min ( BCcdf [ which ( BCcdf [ ,2 ]== temp ) , 1 ] )
#GET LB

149 BC<−SSP2%*%g
BC<−round (BC, 5 )

151 SSPtemp<−c b i n d ( SSP2 , BC)
SSPn<−SSP2 [ which ( SSPtemp [ ,7 ] <= (LB+ . 2 )&SSPtemp [ ,7 ] >= (LB− . 2 ) ) , ]

153 BCOUT1<−a p p l y ( SSPn , 1 , FUN = f1 )
BCOUT2<−a p p l y ( SSPn , 1 , FUN = f2 )

155 BCL<−BCOUT1+BCOUT2
BC<−SSPn%*%g

157 BC<−round (BC, 5 )
b l a h 2<−c b i n d ( SSPn , BCL, BC)

159 BCcdf<−un iq ue (BC)
BCcdf<−c b i n d ( BCcdf , r e p ( −999 , l e n g t h ( BCcdf ) ) )

161 f o r ( i i n 1 : l e n g t h ( BCcdf [ , 1 ] ) ) {
BCcdf [ i , 2 ]<−max ( b l a h 2 [ which ( b l a h 2 [ ,8 ]== BCcdf [ i , 1 ] ) , 7 ] )

163 }

temp<−max ( BCcdf [ which ( BCcdf [ , 2 ] <=0 . 0 2 5 ) , 2 ] )
165 LB<−max ( BCcdf [ which ( BCcdf [ ,2 ]== temp ) , 1 ] )

## R e f i n e i n on S o l u t i o n 2nd t ime
167 BC<−SSP3%*%g

BC<−round (BC, 5 )
169 SSPtemp<−c b i n d ( SSP3 , BC)
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SSPn<−SSP3 [ which ( SSPtemp [ ,7 ] <= (UB+ . 1 )&SSPtemp [ ,7 ] >= (UB− . 1 ) ) , ]
171 BCOUT1<−a p p l y ( SSPn , 1 , FUN = f1 )

BCU<−c ( r e p ( 1 , l e n g t h (BCOUT1) ) )−BCOUT1
173 BC<−SSPn%*%g

BC<−round (BC, 5 )
175 b l a h 2<−c b i n d ( SSPn ,BCU, BC)

BCcdf<−un iq ue (BC)
177 BCcdf<−c b i n d ( BCcdf , r e p ( −999 , l e n g t h ( BCcdf ) ) )

f o r ( i i n 1 : l e n g t h ( BCcdf [ , 1 ] ) ) {
179 BCcdf [ i , 2 ]<−max ( b l a h 2 [ which ( b l a h 2 [ ,8 ]== BCcdf [ i , 1 ] ) , 7 ] )
}

181 #GET UB
temp<−max ( BCcdf [ which ( BCcdf [ , 2 ] <=0 . 0 2 5 ) , 2 ] )

183 UB<−min ( BCcdf [ which ( BCcdf [ ,2 ]== temp ) , 1 ] )
#GET LB

185 BC<−SSP3%*%g
BC<−round (BC, 5 )

187 SSPtemp<−c b i n d ( SSP3 , BC)
SSPn<−SSP3 [ which ( SSPtemp [ ,7 ] <= (LB+ . 1 )&SSPtemp [ ,7 ] >= (LB− . 1 ) ) , ]

189 BCOUT1<−a p p l y ( SSPn , 1 , FUN = f1 )
BCOUT2<−a p p l y ( SSPn , 1 , FUN = f2 )

191 BCL<−BCOUT1+BCOUT2
BC<−SSPn%*%g

193 BC<−round (BC, 5 )
b l a h 2<−c b i n d ( SSPn , BCL, BC)

195 BCcdf<−un iq ue (BC)
BCcdf<−c b i n d ( BCcdf , r e p ( −999 , l e n g t h ( BCcdf ) ) )

197 f o r ( i i n 1 : l e n g t h ( BCcdf [ , 1 ] ) ) {
BCcdf [ i , 2 ]<−max ( b l a h 2 [ which ( b l a h 2 [ ,8 ]== BCcdf [ i , 1 ] ) , 7 ] )

199 }

temp<−max ( BCcdf [ which ( BCcdf [ , 2 ] <=0 . 0 2 5 ) , 2 ] )
201 LB<−max ( BCcdf [ which ( BCcdf [ ,2 ]== temp ) , 1 ] )

## R e f i n e i n on S o l u t i o n 3 rd t ime
203 BC<−SSP4%*%g

BC<−round (BC, 5 )
205 SSPtemp<−c b i n d ( SSP4 , BC)

SSPn<−SSP4 [ which ( SSPtemp [ ,7 ] <= (UB+ . 0 5 )&SSPtemp [ ,7 ] >= (UB− . 0 5 ) ) , ]
207 BCOUT1<−a p p l y ( SSPn , 1 , FUN = f1 )

BCU<−c ( r e p ( 1 , l e n g t h (BCOUT1) ) )−BCOUT1
209 BC<−SSPn%*%g

BC<−round (BC, 5 )
211 b l a h 2<−c b i n d ( SSPn ,BCU, BC)

BCcdf<−un iq ue (BC)
213 BCcdf<−c b i n d ( BCcdf , r e p ( −999 , l e n g t h ( BCcdf ) ) )

f o r ( i i n 1 : l e n g t h ( BCcdf [ , 1 ] ) ) {
215 BCcdf [ i , 2 ]<−max ( b l a h 2 [ which ( b l a h 2 [ ,8 ]== BCcdf [ i , 1 ] ) , 7 ] )
}

217 #GET UB
temp<−max ( BCcdf [ which ( BCcdf [ , 2 ] <=0 . 0 2 5 ) , 2 ] )

219 UB<−min ( BCcdf [ which ( BCcdf [ ,2 ]== temp ) , 1 ] )
#GET LB

221 BC<−SSP4%*%g
BC<−round (BC, 5 )

223 SSPtemp<−c b i n d ( SSP4 , BC)
SSPn<−SSP4 [ which ( SSPtemp [ ,7 ] <= (LB+ . 0 5 )&SSPtemp [ ,7 ] >= (LB− . 0 5 ) ) , ]

225 BCOUT1<−a p p l y ( SSPn , 1 , FUN = f1 )
BCOUT2<−a p p l y ( SSPn , 1 , FUN = f2 )
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227 BCL<−BCOUT1+BCOUT2
BC<−SSPn%*%g

229 BC<−round (BC, 5 )
b l a h 2<−c b i n d ( SSPn , BCL, BC)

231 BCcdf<−un iq ue (BC)
BCcdf<−c b i n d ( BCcdf , r e p ( −999 , l e n g t h ( BCcdf ) ) )

233 f o r ( i i n 1 : l e n g t h ( BCcdf [ , 1 ] ) ) {
BCcdf [ i , 2 ]<−max ( b l a h 2 [ which ( b l a h 2 [ ,8 ]== BCcdf [ i , 1 ] ) , 7 ] )

235 }

t empl<−max ( BCcdf [ which ( BCcdf [ , 2 ] <=0 . 0 2 5 ) , 2 ] )
237 LB<−max ( BCcdf [ which ( BCcdf [ ,2 ]== t empl ) , 1 ] )

#CI R e s u l t s
239 p r i n t ( c (LB ,UB) )

C.1.4 Fiducial 95% CI for BC with Unequal Weights.
1 # I n p u t s t o Change

p1<−#SET P r e v e l a n c e C l a s s 1
3 p2<−#SET P r e v e l a n c e C l a s s 2

p3<−#SET P r e v e l a n c e C l a s s 3
5 w21<−#SET COST 2 | 1

w31<−#SET COST 3 | 1
7 w12<−#SET COST 1 | 2

w32<−#SET COST 3 | 2
9 w13<−#SET COST 1 | 3

w23<−#SET COST 2 | 3
11 n1<−# Sample S i z e C l a s s 1

n2<−# Sample S i z e C l a s s 2
13 n3<−# Sample S i z e C l a s s 3

BChat<−# E s t i m a t e d Bayes Cos t
15 ##CREATE MULTINOMIAL SAMPLESPACE VIA Weizhen Wang 2012

# C l a s s 1 SS
17 row =( n1 +1) * ( n1 +2) / 2*4

s s=m a t r i x ( 1 : row , n c o l =4)
19 nn=1

fn =1
21 w h i l e ( nn<n +1+0.5) {

low=fn−nn+1
23 up= fn

s s [ low : up , 1 ] = n+1−nn
25 uu=up−low

s s [ low : up , 2 ] = 0 : uu
27 nn=nn+1

fn= fn+nn
29 }

s s [ , 3 ] = n− s s [ ,1 ] − s s [ , 2 ]
31 s s 1<− s s [ , 1 : 3 ]

# C l a s s 2 SS
33 row =( n2 +1) * ( n2 +2) / 2*4

s s=m a t r i x ( 1 : row , n c o l =4)
35 nn=1

fn =1
37 w h i l e ( nn<n +1+0.5) {

low=fn−nn+1
39 up= fn

s s [ low : up , 1 ] = n+1−nn
41 uu=up−low

s s [ low : up , 2 ] = 0 : uu
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43 nn=nn+1
fn= fn+nn

45 }

s s [ , 3 ] = n− s s [ ,1 ] − s s [ , 2 ]
47 s s 2<− s s [ , 1 : 3 ]

# C l a s s 3 SS
49 row =( n3 +1) * ( n3 +2) / 2*4

s s=m a t r i x ( 1 : row , n c o l =4)
51 nn=1

fn =1
53 w h i l e ( nn<n +1+0.5) {

low=fn−nn+1
55 up= fn

s s [ low : up , 1 ] = n+1−nn
57 uu=up−low

s s [ low : up , 2 ] = 0 : uu
59 nn=nn+1

fn= fn+nn
61 }

s s [ , 3 ] = n− s s [ ,1 ] − s s [ , 2 ]
63 s s 3<− s s [ , 1 : 3 ]

LEN<− l e n g t h ( s s 1 [ , 1 ] ) * l e n g t h ( s s 2 [ , 1 ] ) * l e n g t h ( s s 3 [ , 1 ] )
65 l e n 1<− l e n g t h ( s s 1 [ , 1 ] )

l e n 2<− l e n g t h ( s s 2 [ , 1 ] )
67 l e n 3<− l e n g t h ( s s 3 [ , 1 ] )

v1<−c ( r e p ( 1 , l e n 2 * l e n 3 ) )
69 c o l 1<−k r o n e c k e r ( ss1 , v1 )

v2<−c ( r e p ( 1 , l e n 1 ) )
71 v3<−c ( r e p ( 1 , l e n 3 ) )

c o l 2<−k r o n e c k e r ( v2 , k r o n e c k e r ( ss2 , v3 ) )
73 v4<−c ( r e p ( 1 , l e n 1 * l e n 2 ) )

c o l 3<−k r o n e c k e r ( v4 , s s 3 )
75 SS<−m a t r i x ( c b i n d ( co l1 , co l2 , c o l 3 ) , n c o l =9)

Umat<−c ( 0 , ( p1*w21 ) / n1 , ( p1*w31 ) / n1 , 0 , ( p2*w12 ) / n2 , ( p2*w32 ) / n2 , 0 , ( p3*w13 ) / n3 , ( p3*
w23 ) / n3 )

77 U1<−SS [ , 1 : 9 ]%*%Umat
U1<−round ( U1 , 5 )

79 SS<−c b i n d ( SS , U1 )
## Order BC sample Space

81 temp<−d a t a . f rame ( SS )
SSOR<−temp [ o r d e r ( temp [ , 1 0 ] ) , ]

83 end<− l e n g t h (SSOR [ , 1 ] )
##by . 0 5 , SSP3

85 pvec<−seq ( from =0 , t o =1 , by = . 0 5 )
l e n<− l e n g t h ( pvec )

87 v1<−c ( r e p ( 1 , l e n ) )
c o l 1<−k r o n e c k e r ( pvec , v1 )

89 c o l 2<−k r o n e c k e r ( v1 , pvec )
c o l 3<−1−co l1 −c o l 2

91 Ps<−c b i n d ( co l1 , co l2 , c o l 3 )
Pspace<−Ps [−which ( Ps [ , 3 ] <0 ) , ]

93 rowp<− l e n g t h ( Pspace [ , 1 ] )
v1<−c ( r e p ( 1 , rowp*rowp ) )

95 c o l 1<−k r o n e c k e r ( Pspace , v1 )
v2<−c ( r e p ( 1 , rowp ) )

97 c o l 2<−k r o n e c k e r ( v2 , k r o n e c k e r ( Pspace , v2 ) )
c o l 3<−k r o n e c k e r ( v2 , k r o n e c k e r ( v2 , Pspace ) )
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99 SSP1<−m a t r i x ( c b i n d ( co l1 , co l2 , c o l 3 ) , n c o l =9)
g<−c ( 0 , ( p1*w21 ) , ( p1*w31 ) , 0 , ( p2*w12 ) , ( p2*w32 ) , 0 , ( p3*w13 ) , ( p3*w23 ) )

101 f1<− f u n c t i o n ( p ) {
f a c t o r i a l ( n1 ) * f a c t o r i a l ( n2 ) * f a c t o r i a l ( n3 ) *sum ( ( ( p [ 1 ] ˆ ( SSOR [ 1 : ( LBound−1) , 1 ] ) ) /

f a c t o r i a l (SSOR [ 1 : ( LBound−1) , 1 ] ) ) * ( ( p [ 2 ] ˆ ( SSOR [ 1 : ( LBound−1) , 2 ] ) ) / f a c t o r i a l (
SSOR [ 1 : ( LBound−1) , 2 ] ) ) *

103 ( ( p [ 3 ] ˆ ( SSOR [ 1 : ( LBound−1) , 3 ] ) ) / f a c t o r i a l (SSOR [ 1 : ( LBound−1) , 3 ] ) ) * ( ( p [ 4 ] ˆ ( SSOR [ 1 : (
LBound−1) , 4 ] ) ) / f a c t o r i a l (SSOR [ 1 : ( LBound−1) , 4 ] ) ) *

( ( p [ 5 ] ˆ ( SSOR [ 1 : ( LBound−1) , 5 ] ) ) / f a c t o r i a l (SSOR [ 1 : ( LBound−1) , 5 ] ) ) * ( ( p [ 6 ] ˆ ( SSOR [ 1 : (
LBound−1) , 6 ] ) ) / f a c t o r i a l (SSOR [ 1 : ( LBound−1) , 6 ] ) ) *

105 ( ( p [ 7 ] ˆ ( SSOR [ 1 : ( LBound−1) , 7 ] ) ) / f a c t o r i a l (SSOR [ 1 : ( LBound−1) , 7 ] ) ) * ( ( p [ 8 ] ˆ ( SSOR [ 1 : (
LBound−1) , 8 ] ) ) / f a c t o r i a l (SSOR [ 1 : ( LBound−1) , 8 ] ) ) *

( ( p [ 9 ] ˆ ( SSOR [ 1 : ( LBound−1) , 9 ] ) ) / f a c t o r i a l (SSOR [ 1 : ( LBound−1) , 9 ] ) ) )
107 }

f2<− f u n c t i o n ( p ) {
109 f a c t o r i a l ( n1 ) * f a c t o r i a l ( n2 ) * f a c t o r i a l ( n3 ) *sum ( ( ( p [ 1 ] ˆ ( SSOR[ LBound : UBound , 1 ] ) ) /

f a c t o r i a l (SSOR[ LBound : UBound , 1 ] ) ) * ( ( p [ 2 ] ˆ ( SSOR[ LBound : UBound , 2 ] ) ) / f a c t o r i a l (
SSOR[ LBound : UBound , 2 ] ) ) *

( ( p [ 3 ] ˆ ( SSOR[ LBound : UBound , 3 ] ) ) / f a c t o r i a l (SSOR[ LBound : UBound , 3 ] ) ) * ( ( p [ 4 ] ˆ ( SSOR[
LBound : UBound , 4 ] ) ) / f a c t o r i a l (SSOR[ LBound : UBound , 4 ] ) ) *

111 ( ( p [ 5 ] ˆ ( SSOR[ LBound : UBound , 5 ] ) ) / f a c t o r i a l (SSOR[ LBound : UBound , 5 ] ) ) * ( ( p [ 6 ] ˆ ( SSOR[
LBound : UBound , 6 ] ) ) / f a c t o r i a l (SSOR[ LBound : UBound , 6 ] ) ) *

( ( p [ 7 ] ˆ ( SSOR[ LBound : UBound , 7 ] ) ) / f a c t o r i a l (SSOR[ LBound : UBound , 7 ] ) ) * ( ( p [ 8 ] ˆ ( SSOR[
LBound : UBound , 8 ] ) ) / f a c t o r i a l (SSOR[ LBound : UBound , 8 ] ) ) *

113 ( ( p [ 9 ] ˆ ( SSOR[ LBound : UBound , 9 ] ) ) / f a c t o r i a l (SSOR[ LBound : UBound , 9 ] ) ) )
}

115 BCmatch<−which (SSOR[ ,10]== BChat [ 1 ] )
LBound<−min ( BCmatch )

117 UBound<−max ( BCmatch )
BCOUT1<−a p p l y ( SSP1 , 1 , FUN = f1 )

119 BCOUT2<−a p p l y ( SSP1 , 1 , FUN = f2 )
BCU<−BCOUT1+BCOUT2

121 BCL<−c ( r e p ( 1 , l e n g t h (BCOUT1) ) )−BCOUT1
BC<−SSP1%*%g

123 BC<−round (BC, 5 )
b l a h 2<−c b i n d ( SSP1 ,BCU, BC)

125 BCcdf<−un iq ue (BC)
BCcdf<−c b i n d ( BCcdf , r e p ( −999 , l e n g t h ( BCcdf ) ) )

127 f o r ( i i n 1 : l e n g t h ( BCcdf [ , 1 ] ) ) {
BCcdf [ i , 2 ]<−max ( b l a h 2 [ which ( b l a h 2 [ ,11]== BCcdf [ i , 1 ] ) , 1 0 ] )

129 }

BCcdf<−d a t a . f rame ( BCcdf )
131 BCcdf<−BCcdf [ o r d e r ( BCcdf [ , 1 ] ) , ]

BCcdfs<−BCcdf
133 b l a h<− l e n g t h ( BCcdfs [ , 1 ] )

f o r ( i i n 1 : b l a h ) {
135 BCcdfs [ i , 2 ]<−max ( BCcdf [ which ( BCcdf [ ,1] >= BCcdfs [ i , 1 ] ) , 2 ] )
}

137 BCcdf<−BCcdfs
#GET UB

139 temp<−max ( BCcdf [ which ( BCcdf [ , 2 ] <=0 . 0 2 5 ) , 2 ] )
UB<−min ( BCcdf [ which ( BCcdf [ ,2 ]== temp ) , 1 ] )

141 #GET LB
BC<−SSP1%*%g

143 BC<−round (BC, 5 )
b l a h 2<−c b i n d ( SSP1 , BCL, BC)

145 BCcdf<−un iq ue (BC)
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BCcdf<−c b i n d ( BCcdf , r e p ( −999 , l e n g t h ( BCcdf ) ) )
147 f o r ( i i n 1 : l e n g t h ( BCcdf [ , 1 ] ) ) {

BCcdf [ i , 2 ]<−max ( b l a h 2 [ which ( b l a h 2 [ ,11]== BCcdf [ i , 1 ] ) , 1 0 ] )
149 }

BCcdf<−d a t a . f rame ( BCcdf )
151 BCcdf<−BCcdf [ o r d e r ( BCcdf [ , 1 ] ) , ]

BCcdfs<−BCcdf
153 b l a h<− l e n g t h ( BCcdfs [ , 1 ] )

f o r ( i i n 1 : b l a h ) {
155 BCcdfs [ i , 2 ]<−max ( BCcdf [ which ( BCcdf [ ,1] <= BCcdfs [ i , 1 ] ) , 2 ] )
}

157 BCcdf<−BCcdfs
temp<−max ( BCcdf [ which ( BCcdf [ , 2 ] <=0 . 0 2 5 ) , 2 ] )

159 LB<−max ( BCcdf [ which ( BCcdf [ ,2 ]== temp ) , 1 ] )
#CI R e s u l t s

161 p r i n t ( c (LB ,UB) )

C.1.5 Delta Method Hypothesis Tests .
C.1.5.1 One-Sided Test on Single BC Value.

1 # S e t Up
p1<−#SET P r e v e l a n c e C l a s s 1

3 p2<−#SET P r e v e l a n c e C l a s s 2
p3<−#SET P r e v e l a n c e C l a s s 3

5 w21<−#SET COST 2 | 1
w31<−#SET COST 3 | 1

7 w12<−#SET COST 1 | 2
w32<−#SET COST 3 | 2

9 w13<−#SET COST 1 | 3
w23<−#SET COST 2 | 3

11 TV<−# S e t BCnot
n1<−#SIZE C l a s s 1

13 n2<−#SIZE C l a s s 2
n3<−#SIZE C l a s s 3

15 Y<−# Ve c t o r o f Va lues f o r C l a s s 1
X<−# Ve c t o r o f Va lues f o r C l a s s 2

17 Z<−# Ve c t o r o f Va lues f o r C l a s s 3
s t a r t<−c ( − . 1 , 0 )

19 L<−c (−1000 ,−1000)
U<−c ( 1 0 0 0 , 1 0 0 0 )

21 ##Do Not Change
gmu1<−mean (Y)

23 gmu2<−mean (X)
gmu3<−mean ( Z )

25 g s i g 1<−sd (Y)
g s i g 2<−sd (X)

27 g s i g 3<−sd ( Z )
f<− f u n c t i o n ( p a r ) { abs ( pnorm ( p a r [ 2 ] , gmu1 , g s i g 1 )−pnorm ( p a r [ 1 ] , gmu1 , g s i g 1 ) ) * ( p1*w21 )

+

29 abs (1−pnorm ( p a r [ 2 ] , gmu1 , g s i g 1 ) ) * ( p1*w31 )+

abs ( pnorm ( p a r [ 1 ] , gmu2 , g s i g 2 ) ) * ( p2*w12 )+

31 abs (1−pnorm ( p a r [ 2 ] , gmu2 , g s i g 2 ) ) * ( p2*w32 )+

abs ( pnorm ( p a r [ 1 ] , gmu3 , g s i g 3 ) ) * ( p3*w13 )+

33 abs ( pnorm ( p a r [ 2 ] , gmu3 , g s i g 3 )−pnorm ( p a r [ 1 ] , gmu3 , g s i g 3 ) ) * ( p3*w23 ) }
x<−nlminb ( s t a r t , f , l ower = L , upper = U)

35 c1<−x$ p a r [ 1 ]
c2<−x$ p a r [ 2 ]

37 EBC<−x$ o b j e c t i v e
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# C a l c u l a t e A l l P a r t i a l D e r i v a t i v e s as was done f o r D e l t a Method CI#
39 # Calc V a r i a n c e s o f P a r a m e t e r s

vm1<− ( g s i g 1 ˆ 2 ) / n1
41 vm2<− ( g s i g 2 ˆ 2 ) / n2

vm3<− ( g s i g 3 ˆ 2 ) / n3
43 # Calc v a r o f s i g u s i n g d e l t a method

vs1<− ( g s i g 1 ˆ 2 ) / (2 * ( n1−1) )
45 vs2<− ( g s i g 2 ˆ 2 ) / (2 * ( n1−1) )

vs3<− ( g s i g 3 ˆ 2 ) / (2 * ( n1−1) )
47 VBC<− ( dbcm1 ˆ 2 ) *vm1+( dbcs1 ˆ 2 ) * vs1+

( dbcm2 ˆ 2 ) *vm2+( dbcs2 ˆ 2 ) * vs2+

49 ( dbcm3 ˆ 2 ) *vm3+( dbcs3 ˆ 2 ) * vs3
W<− (EBC−TV) / s q r t (VBC)

51 # T e s t p−v a l u e − t o compare t o a l p h a
d e l t a p<−pnorm (W, lower . t a i l =TRUE)

C.1.5.2 One-Sided Test on the Difference of Two Independent BC Values.
p1<−#SET P r e v e l a n c e C l a s s 1

2 p2<−#SET P r e v e l a n c e C l a s s 2
p3<−#SET P r e v e l a n c e C l a s s 3

4 w21<−#SET COST 2 | 1
w31<−#SET COST 3 | 1

6 w12<−#SET COST 1 | 2
w32<−#SET COST 3 | 2

8 w13<−#SET COST 1 | 3
w23<−#SET COST 2 | 3

10 TV<−# S e t BCnot
n1<−#SIZE C l a s s 1

12 n2<−#SIZE C l a s s 2
n3<−#SIZE C l a s s 3

14 TV<−# S e t E ta n o t
YA<−# Ve c t o r o f Va lues f o r C l a s s 1− C l a s s i f i c a t i o n System A

16 XA<−# Ve c t o r o f Va lues f o r C l a s s 2− C l a s s i f i c a t i o n System A
ZA<−# Ve c t o r o f Va lues f o r C l a s s 3− C l a s s i f i c a t i o n System A

18 Y<−# Ve c t o r o f Va lues f o r C l a s s 1− C l a s s i f i c a t i o n System B
X<−# Ve c t o r o f Va lues f o r C l a s s 2− C l a s s i f i c a t i o n System B

20 Z<−# Ve c t o r o f Va lues f o r C l a s s 3− C l a s s i f i c a t i o n System B
##Do Not Change

22 #CS A
gmu1<−mean (YA)

24 gmu2<−mean (XA)
gmu3<−mean (ZA)

26 g s i g 1<−sd (YA)
g s i g 2<−sd (XA)

28 g s i g 3<−sd (ZA)
f<− f u n c t i o n ( p a r ) { abs ( pnorm ( p a r [ 2 ] , gmu1 , g s i g 1 )−pnorm ( p a r [ 1 ] , gmu1 , g s i g 1 ) ) * ( p1*w21 )

+

30 abs (1−pnorm ( p a r [ 2 ] , gmu1 , g s i g 1 ) ) * ( p1*w31 )+

abs ( pnorm ( p a r [ 1 ] , gmu2 , g s i g 2 ) ) * ( p2*w12 )+

32 abs (1−pnorm ( p a r [ 2 ] , gmu2 , g s i g 2 ) ) * ( p2*w32 )+

abs ( pnorm ( p a r [ 1 ] , gmu3 , g s i g 3 ) ) * ( p3*w13 )+

34 abs ( pnorm ( p a r [ 2 ] , gmu3 , g s i g 3 )−pnorm ( p a r [ 1 ] , gmu3 , g s i g 3 ) ) * ( p3*w23 ) }
x<−opt im ( s t a r t , f , l ower = L , upper = U, method=”L−BFGS−B” )

36 c1<−x$ p a r [ 1 ]
c2<−x$ p a r [ 2 ]

38 EBCA<−x$ v a l u e
# C a l c u l a t e a l l P a r t i a l D e r i v a t i v e s f o r CS A as was done f o r D e l t a CI
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40 # Calc V a r i a n c e s o f P a r a m e t e r s
vm1<− ( g s i g 1 ˆ 2 ) / n1

42 vm2<− ( g s i g 2 ˆ 2 ) / n2
vm3<− ( g s i g 3 ˆ 2 ) / n3

44 # Calc v a r o f s i g u s i n g d e l t a method
vs1<− ( g s i g 1 ˆ 2 ) / (2 * ( n1−1) )

46 vs2<− ( g s i g 2 ˆ 2 ) / (2 * ( n1−1) )
vs3<− ( g s i g 3 ˆ 2 ) / (2 * ( n1−1) )

48 VBCA<− ( dbcm1 ˆ 2 ) *vm1+( dbcs1 ˆ 2 ) * vs1+

( dbcm2 ˆ 2 ) *vm2+( dbcs2 ˆ 2 ) * vs2+

50 ( dbcm3 ˆ 2 ) *vm3+( dbcs3 ˆ 2 ) * vs3
#CS B

52 gmu1<−mean (Y)
gmu2<−mean (X)

54 gmu3<−mean ( Z )
g s i g 1<−sd (Y)

56 g s i g 2<−sd (X)
g s i g 3<−sd ( Z )

58 f<− f u n c t i o n ( p a r ) { abs ( pnorm ( p a r [ 2 ] , gmu1 , g s i g 1 )−pnorm ( p a r [ 1 ] , gmu1 , g s i g 1 ) ) * ( p1*w21 )
+

abs (1−pnorm ( p a r [ 2 ] , gmu1 , g s i g 1 ) ) * ( p1*w31 )+

60 abs ( pnorm ( p a r [ 1 ] , gmu2 , g s i g 2 ) ) * ( p2*w12 )+

abs (1−pnorm ( p a r [ 2 ] , gmu2 , g s i g 2 ) ) * ( p2*w32 )+

62 abs ( pnorm ( p a r [ 1 ] , gmu3 , g s i g 3 ) ) * ( p3*w13 )+

abs ( pnorm ( p a r [ 2 ] , gmu3 , g s i g 3 )−pnorm ( p a r [ 1 ] , gmu3 , g s i g 3 ) ) * ( p3*w23 ) }
64 x<−opt im ( s t a r t , f , l ower = L , upper = U, method=”L−BFGS−B” )

c1<−x$ p a r [ 1 ]
66 c2<−x$ p a r [ 2 ]

EBC<−x$ v a l u e
68 # C a l c u l a t e a l l P a r t i a l D e r i v a t i v e s f o r CS B as was done f o r D e l t a CI

# Calc V a r i a n c e s o f P a r a m e t e r s
70 vm1<− ( g s i g 1 ˆ 2 ) / n1

vm2<− ( g s i g 2 ˆ 2 ) / n2
72 vm3<− ( g s i g 3 ˆ 2 ) / n3

# Calc v a r o f s i g u s i n g d e l t a method
74 vs1<− ( g s i g 1 ˆ 2 ) / (2 * ( n1−1) )

vs2<− ( g s i g 2 ˆ 2 ) / (2 * ( n1−1) )
76 vs3<− ( g s i g 3 ˆ 2 ) / (2 * ( n1−1) )

VBC<− ( dbcm1 ˆ 2 ) *vm1+( dbcs1 ˆ 2 ) * vs1+

78 ( dbcm2 ˆ 2 ) *vm2+( dbcs2 ˆ 2 ) * vs2+

( dbcm3 ˆ 2 ) *vm3+( dbcs3 ˆ 2 ) * vs3
80 VETA<−VBCA+VBC

EETA<−EBCA−EBC
82 W<− (EETA−TV) / s q r t (VETA)

# T e s t p−v a l u e − t o compare t o a l p h a
84 d e l t a p<−pnorm (W, lower . t a i l =FALSE)

C.1.6 Generalized Hypothesis Tests .
C.1.6.1 One-Sided Test on Single BC Value.

1 # S e t Up
p1<−#SET P r e v e l a n c e C l a s s 1

3 p2<−#SET P r e v e l a n c e C l a s s 2
p3<−#SET P r e v e l a n c e C l a s s 3

5 w21<−#SET COST 2 | 1
w31<−#SET COST 3 | 1

7 w12<−#SET COST 1 | 2
w32<−#SET COST 3 | 2

191



9 w13<−#SET COST 1 | 3
w23<−#SET COST 2 | 3

11 TV<−# S e t BCnot
n1<−#SIZE C l a s s 1

13 n2<−#SIZE C l a s s 2
n3<−#SIZE C l a s s 3

15 Y<−# Ve c t o r o f Va lues f o r C l a s s 1
X<−# Ve c t o r o f Va lues f o r C l a s s 2

17 Z<−# Ve c t o r o f Va lues f o r C l a s s 3
K<−2500 # Change i f K o t h e r t h a n 2500 i s d e s i r e d

19 s t a r t<−c ( − . 1 , 0 )
L<−c (−1000 ,−1000)

21 U<−c ( 1 0 0 0 , 1 0 0 0 )
##Do Not Change

23 yba r2<−mean (Y)
yba r1<−mean (X)

25 yba r3<−mean ( Z )
va r2<−v a r (Y)

27 va r1<−v a r (X)
va r3<−v a r ( Z )

29 t 1<− r t (K, n2−1)
t 2<− r t (K, n1−1)

31 t 3<− r t (K, n3−1)
V1<− r c h i s q (K, n2−1)

33 V2<− r c h i s q (K, n1−1)
V3<− r c h i s q (K, n3−1)

35 Rs1<−c ( r e p ( ( n2−1) * var1 ,K) ) / V1
Rs2<−c ( r e p ( ( n1−1) * var2 ,K) ) / V2

37 Rs3<−c ( r e p ( ( n3−1) * var3 ,K) ) / V3
Rm1<−c ( r e p ( ybar1 ,K) ) −( t 1 * ( s q r t ( va r1 / n2 ) ) )

39 Rm2<−c ( r e p ( ybar2 ,K) ) −( t 2 * ( s q r t ( va r2 / n1 ) ) )
Rm3<−c ( r e p ( ybar3 ,K) ) −( t 3 * ( s q r t ( va r3 / n3 ) ) )

41 f<− f u n c t i o n ( x ) {
hun2<− f u n c t i o n ( p a r ) { abs ( pnorm ( p a r [ 2 ] , x [ 1 ] , x [ 2 ] )−pnorm ( p a r [ 1 ] , x [ 1 ] , x [ 2 ] ) ) * ( p1*w21

)+

43 abs (1−pnorm ( p a r [ 2 ] , x [ 1 ] , x [ 2 ] ) ) * ( p1*w31 )+

abs ( pnorm ( p a r [ 1 ] , x [ 3 ] , x [ 4 ] ) ) * ( p2*w12 )+

45 abs (1−pnorm ( p a r [ 2 ] , x [ 3 ] , x [ 4 ] ) ) * ( p2*w32 )+

abs ( pnorm ( p a r [ 1 ] , x [ 5 ] , x [ 6 ] ) ) * ( p3*w13 )+

47 abs ( pnorm ( p a r [ 2 ] , x [ 5 ] , x [ 6 ] )−pnorm ( p a r [ 1 ] , x [ 5 ] , x [ 6 ] ) ) * ( p3*w23 ) }
y<−opt im ( s t a r t , hun2 , lower = L , upper = U, method=”L−BFGS−B” )

49 BC<−y$ v a l u e
r e t u r n (BC)

51 }

ap1<−c b i n d (Rm2, s q r t ( Rs2 ) ,Rm1, s q r t ( Rs1 ) ,Rm3, s q r t ( Rs3 ) )
53 RBC<−a p p l y ( ap1 , 1 , FUN= f )

# T e s t p−v a l u e − t o compare t o a l p h a
55 genp<− l e n g t h ( which (RBC>TV) ) /K

C.1.6.2 One-Sided Test on the Difference of Two Independent BC Values.
1 p1<−#SET P r e v e l a n c e C l a s s 1

p2<−#SET P r e v e l a n c e C l a s s 2
3 p3<−#SET P r e v e l a n c e C l a s s 3

w21<−#SET COST 2 | 1
5 w31<−#SET COST 3 | 1

w12<−#SET COST 1 | 2
7 w32<−#SET COST 3 | 2
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w13<−#SET COST 1 | 3
9 w23<−#SET COST 2 | 3

TV<−# S e t BCnot
11 n1<−#SIZE C l a s s 1

n2<−#SIZE C l a s s 2
13 n3<−#SIZE C l a s s 3

TV<−# S e t E ta n o t
15 YA<−# Ve c t o r o f Va lues f o r C l a s s 1− C l a s s i f i c a t i o n System A

XA<−# Ve c t o r o f Va lues f o r C l a s s 2− C l a s s i f i c a t i o n System A
17 ZA<−# Ve c t o r o f Va lues f o r C l a s s 3− C l a s s i f i c a t i o n System A

Y<−# Ve c t o r o f Va lues f o r C l a s s 1− C l a s s i f i c a t i o n System B
19 X<−# Ve c t o r o f Va lues f o r C l a s s 2− C l a s s i f i c a t i o n System B

Z<−# Ve c t o r o f Va lues f o r C l a s s 3− C l a s s i f i c a t i o n System B
21 K<−2500 # Change i f d e s i r e K o t h e r t h a n 2500

##Do Not Change
23 yba r2<−mean (YA)

yba r1<−mean (XA)
25 yba r3<−mean (ZA)

va r2<−v a r (YA)
27 va r1<−v a r (XA)

va r3<−v a r (ZA)
29 t 1<− r t (K, n2−1)

t 2<− r t (K, n1−1)
31 t 3<− r t (K, n3−1)

V1<− r c h i s q (K, n2−1)
33 V2<− r c h i s q (K, n1−1)

V3<− r c h i s q (K, n3−1)
35 Rs1<−c ( r e p ( ( n2−1) * var1 ,K) ) / V1

Rs2<−c ( r e p ( ( n1−1) * var2 ,K) ) / V2
37 Rs3<−c ( r e p ( ( n3−1) * var3 ,K) ) / V3

Rm1<−c ( r e p ( ybar1 ,K) ) −( t 1 * ( s q r t ( va r1 / n2 ) ) )
39 Rm2<−c ( r e p ( ybar2 ,K) ) −( t 2 * ( s q r t ( va r2 / n1 ) ) )

Rm3<−c ( r e p ( ybar3 ,K) ) −( t 3 * ( s q r t ( va r3 / n3 ) ) )
41 f<− f u n c t i o n ( x ) {

hun2<− f u n c t i o n ( p a r ) { abs ( pnorm ( p a r [ 2 ] , x [ 1 ] , x [ 2 ] )−pnorm ( p a r [ 1 ] , x [ 1 ] , x [ 2 ] ) ) * ( p1*w21
)+

43 abs (1−pnorm ( p a r [ 2 ] , x [ 1 ] , x [ 2 ] ) ) * ( p1*w31 )+

abs ( pnorm ( p a r [ 1 ] , x [ 3 ] , x [ 4 ] ) ) * ( p2*w12 )+

45 abs (1−pnorm ( p a r [ 2 ] , x [ 3 ] , x [ 4 ] ) ) * ( p2*w32 )+

abs ( pnorm ( p a r [ 1 ] , x [ 5 ] , x [ 6 ] ) ) * ( p3*w13 )+

47 abs ( pnorm ( p a r [ 2 ] , x [ 5 ] , x [ 6 ] )−pnorm ( p a r [ 1 ] , x [ 5 ] , x [ 6 ] ) ) * ( p3*w23 ) }
y<−opt im ( s t a r t , hun2 , lower = L , upper = U, method=”L−BFGS−B” )

49 BC<−y$ v a l u e
r e t u r n (BC)

51 }

ap1<−c b i n d (Rm2, s q r t ( Rs2 ) ,Rm1, s q r t ( Rs1 ) ,Rm3, s q r t ( Rs3 ) )
53 RbcA<−a p p l y ( ap1 , 1 , FUN= f )

yba r2<−mean (Y)
55 yba r1<−mean (X)

yba r3<−mean ( Z )
57 va r2<−v a r (Y)

va r1<−v a r (X)
59 va r3<−v a r ( Z )

t 1<− r t (K, n2−1)
61 t 2<− r t (K, n1−1)

t 3<− r t (K, n3−1)
63 V1<− r c h i s q (K, n2−1)
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V2<− r c h i s q (K, n1−1)
65 V3<− r c h i s q (K, n3−1)

Rs1<−c ( r e p ( ( n2−1) * var1 ,K) ) / V1
67 Rs2<−c ( r e p ( ( n1−1) * var2 ,K) ) / V2

Rs3<−c ( r e p ( ( n3−1) * var3 ,K) ) / V3
69 Rm1<−c ( r e p ( ybar1 ,K) ) −( t 1 * ( s q r t ( va r1 / n2 ) ) )

Rm2<−c ( r e p ( ybar2 ,K) ) −( t 2 * ( s q r t ( va r2 / n1 ) ) )
71 Rm3<−c ( r e p ( ybar3 ,K) ) −( t 3 * ( s q r t ( va r3 / n3 ) ) )

ap1<−c b i n d (Rm2, s q r t ( Rs2 ) ,Rm1, s q r t ( Rs1 ) ,Rm3, s q r t ( Rs3 ) )
73 Rbc<−a p p l y ( ap1 , 1 , FUN= f )

Re ta<−RbcA−Rbc
75 # T e s t p−v a l u e − t o compare t o a l p h a

genp<− l e n g t h ( which ( Reta<TV) ) /K

C.1.7 Exact Hypothesis Tests .
C.1.7.1 One-Sided Test on Single BC Value.

# I n p u t s
2 BC0<−# s e t BC n o t

n1<−# Sample S i z e C l a s s 1
4 n2<−# Sample S i z e C l a s s 1

n3<−# Sample S i z e C l a s s 1
6 BChat<−# E s t i m a t e d BC

p1<−#SET P r e v e l a n c e C l a s s 1
8 p2<−#SET P r e v e l a n c e C l a s s 2

p3<−#SET P r e v e l a n c e C l a s s 3
10 w21<−#SET COST 2 | 1

w31<−#SET COST 3 | 1
12 w12<−#SET COST 1 | 2

w32<−#SET COST 3 | 2
14 w13<−#SET COST 1 | 3

w23<−#SET COST 2 | 3
16 ## C r e a t SSOR as done i n F i d u c i a l CI code

# C r e a t e P r o b a b i l i t y Space
18 pvec<−seq ( from =0 , t o =1 , by = . 0 5 )

l e n<− l e n g t h ( pvec )
20 v1<−c ( r e p ( 1 , l e n ) )

c o l 1<−k r o n e c k e r ( pvec , v1 )
22 c o l 2<−k r o n e c k e r ( v1 , pvec )

c o l 3<−1−co l1 −c o l 2
24 Ps<−c b i n d ( co l1 , co l2 , c o l 3 )

Pspace3<−Ps [−which ( Ps [ , 3 ] <0 ) , ]
26 c o l 1 b<−pvec

c12<−1−pvec
28 Pspace2<−c b i n d ( co l1b , c12 )

rowp<− l e n g t h ( Pspace3 [ , 1 ] )
30 v1<−c ( r e p ( 1 , rowp*rowp ) )

c o l 1<−k r o n e c k e r ( Pspace2 , v1 )
32 rowb<− l e n g t h ( Pspace2 [ , 1 ] )

v2<−c ( r e p ( 1 , rowp ) )
34 v3<−c ( r e p ( 1 , rowb ) )

c o l 2<−k r o n e c k e r ( v3 , k r o n e c k e r ( Pspace3 , v2 ) )
36 c o l 3<−k r o n e c k e r ( v3 , k r o n e c k e r ( v2 , Pspace3 ) )

SSP4<−m a t r i x ( c b i n d ( co l2 , co l1 , c o l 3 ) , n c o l =8)
38 end<− l e n g t h (SSOR [ , 1 ] )

g<−c ( 0 , ( p1*w21 ) , ( p1*w31 ) , 0 , ( p2*w12 ) , ( p2*w32 ) , 0 , ( p3*w13 ) , ( p3*w23 ) )
40 BC<−SSP4%*%g

BC<−round (BC, 5 )

194



42 SSPtemp<−c b i n d ( SSP4 , BC)
SSPn<−SSP4 [ which ( SSPtemp [ ,9 ] >= (BC0) ) , ]

44 BC<−SSPn%*%g
BC<−round (BC, 5 )

46 f1<− f u n c t i o n ( p ) {
f a c t o r i a l ( n1 ) * f a c t o r i a l ( n2 ) * f a c t o r i a l ( n3 ) *sum ( ( ( p [ 1 ] ˆ ( SSOR [ 1 : ( UBound ) , 1 ] ) ) /

f a c t o r i a l (SSOR [ 1 : ( UBound ) , 1 ] ) ) * ( ( p [ 2 ] ˆ ( SSOR [ 1 : ( UBound ) , 2 ] ) ) / f a c t o r i a l (SSOR
[ 1 : ( UBound ) , 2 ] ) ) *

48 ( ( p [ 3 ] ˆ ( SSOR [ 1 : ( UBound ) , 3 ] ) ) / f a c t o r i a l (SSOR [ 1 : ( UBound ) , 3 ] ) ) * ( ( p [ 4 ] ˆ ( SSOR [ 1 : (
UBound ) , 4 ] ) ) / f a c t o r i a l (SSOR [ 1 : ( UBound ) , 4 ] ) ) *

( ( p [ 5 ] ˆ ( SSOR [ 1 : ( UBound ) , 5 ] ) ) / f a c t o r i a l (SSOR [ 1 : ( UBound ) , 5 ] ) ) * ( ( p [ 6 ] ˆ ( SSOR [ 1 : (
UBound ) , 6 ] ) ) / f a c t o r i a l (SSOR [ 1 : ( UBound ) , 6 ] ) ) *

50 ( ( p [ 7 ] ˆ ( SSOR [ 1 : ( UBound ) , 7 ] ) ) / f a c t o r i a l (SSOR [ 1 : ( UBound ) , 7 ] ) ) * ( ( p [ 8 ] ˆ ( SSOR [ 1 : (
UBound ) , 8 ] ) ) / f a c t o r i a l (SSOR [ 1 : ( UBound ) , 8 ] ) ) )

}

52 BCmatch<−which (SSOR[ ,9]== BChat [ 1 ] )
UBound<−max ( BCmatch )

54 BCOUT1<−a p p l y ( SSPn , 1 , FUN = f1 )
e v a l 1<−BCOUT1

56 BCOUT<−c b i n d ( eva l1 , BC)
# T e s t p−v a l u e − t o compare t o a l p h a

58 p<−max (BCOUT[ which (BCOUT[ ,2] >=BC0) , 1 ] )

C.1.7.2 One-Sided Test on the Difference of Two Independent BC Values, Equal
Weights Only.

# I n p u t s
2 n1a<−# Sample S i z e C l a s s 1 − CS A

n2a<−# Sample S i z e C l a s s 2 − CS A
4 n3a<−# Sample S i z e C l a s s 3 − CS A

n1b<−# Sample S i z e C l a s s 1 − CS B
6 n2b<−# Sample S i z e C l a s s 2 − CS B

n3b<−# Sample S i z e C l a s s 3 − CS B
8 E t a h a t<−# E s t i m a t e d BC

TV<−# S e t E ta n o t
10 ##Do Not Change

## C r e a t e Sample Space
12 row =( n1a +1) *2

s s=m a t r i x ( seq ( from =0 , t o=row−1 , by =1) , n c o l =2)
14 s s [ , 2 ] = n1a− s s [ , 1 ]

s s 1<− s s [ , 1 : 2 ]
16 row =( n2a +1) *2

s s=m a t r i x ( seq ( from =0 , t o=row−1 , by =1) , n c o l =2)
18 s s [ , 2 ] = n2a− s s [ , 1 ]

s s 2<− s s [ , 1 : 2 ]
20 row =( n3a +1) *2

s s=m a t r i x ( seq ( from =0 , t o=row−1 , by =1) , n c o l =2)
22 s s [ , 2 ] = n3a− s s [ , 1 ]

s s 3<− s s [ , 1 : 2 ]
24 LEN<− l e n g t h ( s s 1 [ , 1 ] ) * l e n g t h ( s s 2 [ , 1 ] ) * l e n g t h ( s s 3 [ , 1 ] )

l e n 1<− l e n g t h ( s s 1 [ , 1 ] )
26 l e n 2<− l e n g t h ( s s 2 [ , 1 ] )

l e n 3<− l e n g t h ( s s 3 [ , 1 ] )
28 v1<−c ( r e p ( 1 , l e n 2 * l e n 3 ) )

c o l 1<−k r o n e c k e r ( ss1 , v1 )
30 v2<−c ( r e p ( 1 , l e n 1 ) )

v3<−c ( r e p ( 1 , l e n 3 ) )
32 c o l 2<−k r o n e c k e r ( v2 , k r o n e c k e r ( ss2 , v3 ) )
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v4<−c ( r e p ( 1 , l e n 1 * l e n 2 ) )
34 c o l 3<−k r o n e c k e r ( v4 , s s 3 )

SS1<−m a t r i x ( c b i n d ( co l1 , co l2 , c o l 3 ) , n c o l =6)
36 row =( n1b +1) *2

s s=m a t r i x ( seq ( from =0 , t o=row−1 , by =1) , n c o l =2)
38 s s [ , 2 ] = n1b− s s [ , 1 ]

s s 1<− s s [ , 1 : 2 ]
40 row =( n2b +1) *2 ## Coun t ing how many ways t o o r d e r ??

s s=m a t r i x ( seq ( from =0 , t o=row−1 , by =1) , n c o l =2)
42 s s [ , 2 ] = n2b− s s [ , 1 ]

s s 2<− s s [ , 1 : 2 ]
44 row =( n3b +1) *2 ## Coun t ing how many ways t o o r d e r ??

s s=m a t r i x ( seq ( from =0 , t o=row−1 , by =1) , n c o l =2)
46 s s [ , 2 ] = n3b− s s [ , 1 ]

s s 3<− s s [ , 1 : 2 ]
48 LEN<− l e n g t h ( s s 1 [ , 1 ] ) * l e n g t h ( s s 2 [ , 1 ] ) * l e n g t h ( s s 3 [ , 1 ] )

l e n 1<− l e n g t h ( s s 1 [ , 1 ] )
50 l e n 2<− l e n g t h ( s s 2 [ , 1 ] )

l e n 3<− l e n g t h ( s s 3 [ , 1 ] )
52 v1<−c ( r e p ( 1 , l e n 2 * l e n 3 ) )

c o l 1<−k r o n e c k e r ( ss1 , v1 )
54 v2<−c ( r e p ( 1 , l e n 1 ) )

v3<−c ( r e p ( 1 , l e n 3 ) )
56 c o l 2<−k r o n e c k e r ( v2 , k r o n e c k e r ( ss2 , v3 ) )

v4<−c ( r e p ( 1 , l e n 1 * l e n 2 ) )
58 c o l 3<−k r o n e c k e r ( v4 , s s 3 )

SS2<−m a t r i x ( c b i n d ( co l1 , co l2 , c o l 3 ) , n c o l =6)
60 ##Make J o i n t Space ####

l e n 1<− l e n g t h ( SS1 [ , 1 ] )
62 l e n 2<− l e n g t h ( SS2 [ , 1 ] )

LEN<− l e n 1 * l e n 2
64 v1<−c ( r e p ( 1 , l e n 2 ) )

c o l 1<−k r o n e c k e r ( SS1 , v1 )
66 v2<−c ( r e p ( 1 , l e n 1 ) )

c o l 2<−k r o n e c k e r ( v2 , SS2 )
68 SS<−m a t r i x ( c b i n d ( co l1 , c o l 2 ) , n c o l =12)

Umat<−c (1 / n1a , 0 , 1 / n2a , 0 , 1 / n3a ,0 , −1 / n1b ,0 , −1 / n2b ,0 , −1 / n3b , 0 )
70 U1<−SS [ , 1 : 1 2 ]%*%Umat

U1<−round ( U1 , 5 )
72 SS<−c b i n d ( SS , U1 )

## Order Sample Space
74 temp<−d a t a . f rame ( SS )

SSOR<−temp [ o r d e r ( temp [ , 1 3 ] ) , ]
76 # C r e a t e Prob Space t o Se a r c h

pvec<−seq ( from =0 , t o =1 , by = . 0 5 )
78 l e n<− l e n g t h ( pvec )

v1<−c ( r e p ( 1 , l e n * l e n ) )
80 c o l 1<−k r o n e c k e r ( pvec , v1 )

v2<−c ( r e p ( 1 , l e n ) )
82 c o l 2<−k r o n e c k e r ( v2 , k r o n e c k e r ( pvec , v2 ) )

c o l 3<−k r o n e c k e r ( v2 , k r o n e c k e r ( v2 , pvec ) )
84 c12<−c (1− c o l 1 )

c22<−c (1− c o l 2 )
86 c32<−c (1− c o l 3 )

SSP1a<−c b i n d ( co l1 , c12 , co l2 , c22 , co l3 , c32 )
88 SSP1b<−SSP1a

l e n 1<− l e n g t h ( SSP1a [ , 1 ] )
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90 l e n 2<− l e n g t h ( SSP1b [ , 1 ] )
LEN<− l e n 1 * l e n 2

92 v1<−c ( r e p ( 1 , l e n 2 ) )
c o l 1<−k r o n e c k e r ( SSP1a , v1 )

94 v2<−c ( r e p ( 1 , l e n 1 ) )
c o l 2<−k r o n e c k e r ( v2 , SSP1b )

96 SSP4<−m a t r i x ( c b i n d ( co l1 , c o l 2 ) , n c o l =12)
g<−c ( 1 , 0 , 1 , 0 , 1 , 0 , −1 , 0 , −1 , 0 , −1 , 0 )

98 BC<−SSP4%*%g
BC<−round (BC, 5 )

100 SSPtemp<−c b i n d ( SSP4 , BC)
SSPna<−SSP4 [ which ( SSPtemp [ ,13]==TV) , ]

102 SSPn<−SSPna
BC<−SSPn%*%g

104 BC<−round (BC, 5 )
f1<− f u n c t i o n ( p ) {

106 f a c t o r i a l ( n1a ) * f a c t o r i a l ( n2a ) * f a c t o r i a l ( n3a ) *sum ( ( ( p [ 1 ] ˆ ( SSOR [ 1 : ( LBound−1) , 1 ] ) ) /

f a c t o r i a l (SSOR [ 1 : ( LBound−1) , 1 ] ) ) * ( ( p [ 2 ] ˆ ( SSOR [ 1 : ( LBound−1) , 2 ] ) ) / f a c t o r i a l (
SSOR [ 1 : ( LBound−1) , 2 ] ) ) *

( ( p [ 3 ] ˆ ( SSOR [ 1 : ( LBound−1) , 3 ] ) ) / f a c t o r i a l (SSOR [ 1 : ( LBound−1) , 3 ] ) ) * ( ( p [ 4 ] ˆ ( SSOR [ 1 : (
LBound−1) , 4 ] ) ) / f a c t o r i a l (SSOR [ 1 : ( LBound−1) , 4 ] ) ) *

108 ( ( p [ 5 ] ˆ ( SSOR [ 1 : ( LBound−1) , 5 ] ) ) / f a c t o r i a l (SSOR [ 1 : ( LBound−1) , 5 ] ) ) * ( ( p [ 6 ] ˆ ( SSOR [ 1 : (
LBound−1) , 6 ] ) ) / f a c t o r i a l (SSOR [ 1 : ( LBound−1) , 6 ] ) ) )

f a c t o r i a l ( n1b ) * f a c t o r i a l ( n2b ) * f a c t o r i a l ( n3b ) *sum ( ( ( p [ 7 ] ˆ ( SSOR [ 1 : ( LBound−1) , 7 ] ) ) /

f a c t o r i a l (SSOR [ 1 : ( LBound−1) , 7 ] ) ) * ( ( p [ 8 ] ˆ ( SSOR [ 1 : ( LBound−1) , 8 ] ) ) / f a c t o r i a l (
SSOR [ 1 : ( LBound−1) , 8 ] ) ) *

110 ( ( p [ 9 ] ˆ ( SSOR [ 1 : ( LBound−1) , 9 ] ) ) / f a c t o r i a l (SSOR [ 1 : ( LBound−1) , 9 ] ) ) * ( ( p [ 1 0 ] ˆ ( SSOR
[ 1 : ( LBound−1) , 1 0 ] ) ) / f a c t o r i a l (SSOR [ 1 : ( LBound−1) , 1 0 ] ) ) *

( ( p [ 1 1 ] ˆ ( SSOR [ 1 : ( LBound−1) , 1 1 ] ) ) / f a c t o r i a l (SSOR [ 1 : ( LBound−1) , 1 1 ] ) ) * ( ( p [ 1 2 ] ˆ ( SSOR
[ 1 : ( LBound−1) , 1 2 ] ) ) / f a c t o r i a l (SSOR [ 1 : ( LBound−1) , 1 2 ] ) ) )

112 }

Etamatch<−which (SSOR[ ,13]== E t a h a t [ 1 ] )
114 LBound<−min ( Etamatch )

BCOUT1<−a p p l y ( SSPn , 1 , FUN = f1 )
116 e v a l 1<−1−BCOUT1

BCOUT<−c b i n d ( eva l1 , BC)
118 # T e s t p−v a l u e − t o compare t o a l p h a

p<−max (BCOUT[ which (BCOUT[ ,2] >=TV) , 1 ] )
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